• Title/Summary/Keyword: 성토체

Search Result 104, Processing Time 0.02 seconds

An Experimental Study for Estimation of Compression Settlement on Embankment Material Under Self-weight (성토체 압축침하량 산정에 관한 연구)

  • Kwon, Jeongeun;Noh, Ilkwon;Jung, Juyoung;Im, Jongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.33-40
    • /
    • 2009
  • In earthwork projects, the designer considers cut and fill balance for minimizing earthwork which may significantly decrease construction costs. Despite carrying out considerable earthwork design, the decrease in volume of earth occurs in construction sites because of embankment settlement under self-weight, consolidation settlement of soft ground, cavity filling and soil loss due to rainfall-runoff. To reflect the decrease in volume of earth, the specifications for road construction just give shrinkage factors in embankment for soils without consideration of embankment settlement under self-weight. In this study, the computational method is used to estimate the amount of embankment settlement under self-weight developed by Iseda (1972) and Ishii (1976). This research shows that the total compression settlements are between 3 to 10 percent of embankment height according to the property of embankment material and embankment height. As a result, the designer should consider the compression settlement on embankment material under selt-weight.

  • PDF

Field Tests for the Application of Bottom Ash and Shred Tire as Fill Materials (석탄회 및 폐타이어의 성토재로의 적용성 검토를 위한 현장시험)

  • Lee, Sungjin;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.29-37
    • /
    • 2013
  • In this study, we constructed the test embankment with four kinds of sections(2 kinds of bottom ash; tire shred-bottom ash mixture, weathered soil) in field and had been monitoring the behaviour of the test embankment and change of ground water quality for 1 year. In the geotechnical aspects, there was no relative difference of deformation in 4 test materials section and we could not see the possibility of the strength-reduction of coal ash materials by freezing inside of the embankment. In addition, no settlement was observed in the test sections because the base soil of the test sections was rigid enough that no consolidation was occurred. In the examination of water quality, all of the heavy metals and negative ions were detected below the drinking water standards except for sulfate($SO_4^{2-}$). In the beginning of measurement, higher concentrations of sulfate from 4 test sections were detected than drinking water standard for 20 days after beginning of the test but the concentrations decreased below the drinking water standard after 50 days after the tests.

Dynamic Behavior Evaluation of Pile-Supported Slab Track System by Centrifuge Model Test (원심모형 실험을 통한 궤도지지말뚝구조의 동적 거동 평가)

  • Yoo, Mintaek;Lee, Myungjae;Baek, Mincheol;Choo, Yun-Wook;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.5-17
    • /
    • 2019
  • Dynamic centrifuge model test was conducted to evaluate the dynamic stability of the pile-supported slab track method during dynamic railway loading and earthquake loading. The centrifuge tests were carried out for various condition of embankment height and soft ground depth. Based on test results, we found that the bending moment was increased with embankment height and decreased with soft ground depth. In addition, it was confirmed that the pile-supported slab track system could have dynamic stability for short-period seismic loading. However, in case of long-period seismic loading, such as Hachinohe earthquake, the observed maximum bending moment reached to pile cracking moment at the return period of 2,400 year earthquake. The criterion of ratio between embankment height and soft ground depth was suggested for dynamic stability of pile-supported slab track system.

Optimal Method for Injection of Neutralizer into Embankment Structure Composed of Pyrite Rocks (황철석으로 조성된 성토구조체의 중화제 주입을 위한 최적 방안 제안)

  • Young-Suk Song;Jung-Mann Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.73-82
    • /
    • 2023
  • In this study, the optimal method for injection of neutralizer to restraint the leakage of acid drainage in embankment structure composed of pyrite rocks is proposed. Finite Element Analysis was performed to examine the seepage effect caused by injection of neutralizer into the embankment structure. The diameter of the neutralizer injection hole was selected as 50cm, the interval space of injection ranged from 1m to 4m and the injecting pressure ranged from 100kPa to 220 kPa were applied for the numerical analysis. According to the analysis results, the saturation time of the whole embankment structure was shown to be fast at a relatively low injecting pressure in the case of injecting interval space of 1.0m and injecting pressure of 130kPa and in the case of injecting interval space of 2.0m and injecting pressure of 160kPa. When the interval space of injection for saturation of whole embankment structure is selected as 3m, various injection pressures can be applied from 130kPa to 190kPa, and the saturation time of whole embankment is similar regardless of the injection pressure. Therefore, the optimal method for injection of neutralizer considering economic efficiency was selected as injecting interval space of 3.0m and injection pressure of 130kPa.

Geotechnical Characteristics of a Waste Lime Embankment (부산물석회 성토지반의 지반공학적 특성)

  • Hong, Seung Seo;Kim, YoungSeok;Bae, Gu-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.547-555
    • /
    • 2015
  • This work investigated the geotechnical characteristics of an embankment constructed with a mixture of soil and waste lime. The waste lime was a by-product of the manufacture of Na2CO3 at a near by chemical factory in Incheon. Field measurements were take three years after construction, and included geotechnical tests such as field density measurement, plate loading testing, dynamic cone penetration testing, and field CBR measurement. The results indicate that the geotechnical characteristics of waste lime mixtures are suitable for embankment works.

Model Tests on Deformation Behavior of Soft Ground Under Embankment (성토하부 연약지반의 변형거동에 관한 모형실험)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Hong, Won-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • When embankments are constructed on soft clay deposit, unsymmetrical surcharges due to embankments may generate the excessive vertical settlement and lateral deformation of soft clay foundation. The excessive deformations in soft grounds cause not only stability problem of the embankment itself but also that of the adjacent structures. The objectives of this research are to study the deformational behavior of soft ground due to the embankment load with different loading and soil conditions. Five model tests are carried out with different test conditions. From the results of the model tests, it is concluded that the lateral displacement induced by the embankment load occurs in the range of two times of the embankment width from a toe. In addition, the relationship between loading rate, v, and the vertical settlement of the soft ground, ${\Delta}s$, and the lateral displacement at the toe of embankment, ${\Delta}y_m$, is investigated based on the model test results.

A study on eccentric load acted on cut and cover tunnel by numerical approach (복개 터널구조물에 작용하는 편토압 고려를 위한 수치해석적 연구)

  • Bae, Gyu-Jin;Chung, Hyung-Sik;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.227-239
    • /
    • 2003
  • For environment-friendly construction, cut-and-cover tunnels have been constructed, thereby leading to embankment slopes with a number of steps. The slopes cause eccentric load on concrete lining of the tunnel. Nevertheless, uniform vertical and horizontal earth pressures, which are determined by considering a self-weight of embankment and $K_0$, are routinely used in structural calculation. Distribution of the earth pressures applied to the lining will lead to a biased calculation far from the actual behavior of the lining. In this study, basic study, therefore, was performed to consider the eccentric load properly in design and analysis of a cut-and-cover tunnel. A method capable of considering the eccentric load in design was proposed and its applicability was numerically examined through a number of examples.

  • PDF

Estimation of Vertical Stress Developed in Subsurface due to Additional Embankment (추가성토에 의한 성토체 하부에서의 연직응력 산정)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2410-2415
    • /
    • 2011
  • The needs for enlargement of width of existing embankment have been increasing due to heavy traffic and large amount of transporting goods. In this study, it was intended to derive formula for estimating vertical stress induced by additional embankment. Theoretical background for handling plain strain problem was investigated. It can be seen that stress function considered in the analysis was justifiable for compatibility and boundary condition. Notes for using derived formula were also considered.

Centrifuge Modeling on Lateral Flow of Soft Soils and Displacement of Bridge Abutment on the Composite Ground (복합지반상 교대변위 및 지반 측방유동에 관한 원심모델링)

  • Heo, Yol;Park, Sunghun;Yun, Seokhyun;Kwon, Seonuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • In this study, the centrifuge tests were performed to investigate the lateral flow behavior and stability of the ground improved by SCP. The centrifuge tests were fulfilled in the case of the back of abutment filled by EPS (case 1) and soil (case 2), and the potentiometer was installed on the abutment and embankment to measure the vertical and horizontal displacement at the top of abutment. As a result, the vertical displacement measured at the back of abutment was maximum 2.1 m, which was about 12% if compared with the height of embankment. In the case of the back of abutment filled by soil, the vertical and horizontal displacement measured at the top of abutment was 10 cm and 1.1 m, respectively, which exceeded the allowable horizontal displacement. On the other hand, in the case of the back of abutment filled by EPS, the vertical displacement of abutment did nor occur and the horizontal displacement was 1.4 cm. Therefore, the effect of SCP improvement with EPS method adopted to prevent the lateral flow and assure the stability of embankment on the soft ground was far superior.

  • PDF