• Title/Summary/Keyword: 성토지반

Search Result 478, Processing Time 0.024 seconds

A Study on Engineering Characteristics of Load Reducing Material EPS (도로성토하중경감재 EPS의 공학적 특성에 관한 연구)

  • Jang, Myeong-Sun;Cheon, Byeong-Sik;Im, Hae-Sik
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-70
    • /
    • 1996
  • The EPS has the unit weight of only 20~30kg/m3 and is used as one of the methods of reducing road embankment loads. Parts of it's applications are for backfill materials of structures like abutment, retaining wall, etc., to reduce horizontal earth pressure and for banking materials to secure the safety of settlement and bearing capacity by minimizing the stress Increment. However, the Korean Standards (KS) has not yet proposed any testing method for use of EPS as a engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. Therefore, in Korea, EPS is used as banking material without any systematic testing data as a civil engineering material. In this point of view, this paper deals with the engineering characteristics of EPS through many laboratory tests on strength, strain, absorption, and creep. from the results achived through tests, this paper proposes the enactment of a suitable quality testing ordinance and the criteria of unconfined design strength of EPS for use as engineering material.

  • PDF

Numerical Analysis on the Effect of Increasing Stiffness of Geosynthetics on Soil Displacement and Pile Efficiency in Piled Embankment on Soft Soil (성토지지말뚝구조에서 토목섬유 인장강성 증가에 따른 변위 억제 및 말뚝효율 증가량에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.31-43
    • /
    • 2015
  • A numerical analysis on the effect of increasing tensile stiffness of the geosynthetics on the soil displacement and pile efficiency was conducted. Parametric studies by changing the stiffness of soft soil, internal friction and dilatancy angles of the embankment material, and flexual stiffness of the composite layer including the geosynthetics were carried out. In general, increasing stiffness of the geosynthetics improves the pile efficiency, whereas the amount of its improvement depends on the condition of parameters. In case of the sufficiently low stiffness of the soft soil or high flexual stiffness of the composite layer including the geosynthetics, a noticeable increase in the pile efficiency can be observed. When the stiffness of the soft soil is very low, the increase in the stiffness of the geosynthetics can significantly reduce the vertical displacement in the piled embankment. When the flexual stiffness of the composite layer is sufficiently high, increasing stiffness of the geosynthetics can greatly improve the pile efficiency.

Slope Stability due to Additional Embankment (제방 추가성토에 따른 사면안정)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3232-3236
    • /
    • 2012
  • Consolidation and remedies for slope stability were considered for the slope with additional embankment. Transferred stresses due to additional embankment were assessed by the derived formula based on elasticity theory. Available remedies for slope stability with additional embankment including JSP method, stone column method and EPS method were studied. Caution needed for using JSP method is high pressure which can result in heaving of adjacent soils. Shortages of used case and noise of construction of stone column method are also considered for the safe remedy for slope stability.

Newly Developed Settlement Prediction Method on Soft Soils with Subsequent Surcharge Change (성토고 변화를 고려한 새로운 연약 지반 침하 예측 기법)

  • Chun, Sung-Ho;Kim, Han-Saem;Yune, Chan-Young;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.155-162
    • /
    • 2011
  • Settlement prediction based on field monitored data, which is used to control subsequent surcharges, is very important in construction management for soft ground improvement with the preloading method. Observational settlement prediction methods, which are suggested for an instantaneous loading, have been widely used in fields. However, they have difficulties in the settlement prediction with subsequent surcharge change. In this paper, a simple method to predict the settlement with subsequent surcharge change is suggested. The suggested method adopts assumptions to simplify the complex field condition and utilizes observational methods. The suggested method is applied to a large consolidation test result, FDM analysis results, and field monitored settlement data to confirm its practicability. From the applications, the suggested method produces reasonable prediction results with various subsequent surcharge changes.

Behavior of Buried Pipe under Embankment (성토하에 매설된 관의 거동)

  • 강병희;윤유원
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.49-58
    • /
    • 1988
  • The stresses on the buried steel pipe under embankment are analysed by the elasto-plastic theory using FEM to study the influences of the geometry of soil-conduit pipe system and the elastic modulus of the fill on the pipe responses . The geometry of the system considered in this study includes the height of embankment, the thickness of the pipe, and the width and the depth of the trench . By comparing the stresses computed by Marston-Spangler's pipe theory with those obtained from the elasto-plastic theory, Marston-Spangler's theory was discussed and analysed . It is found that the stress distribution around the pipe by elasto- plastic analysis is similar to that by Spangler's flexible pipe theory when the geometrical ratio (diameter/thickness) of the steel pipe is 400. And Spangler's flexible pipe theory does not seem to be suitable to analyse the buried steel pipe of which the geometrical ratio is lower than 200. The vertical loads by the rigid pipe theory are always larger than those by the flexible pipe theory regardness of the variations in the geometry of soil-conduit pipe system considered above and the elastic modulus of the fill.

  • PDF

Reinforcement and Arching Effect of Geogrid-reinforced and Pile-supported Embankments (지오그리드와 말뚝으로 보강된 성토지반의 보강 및 아칭효과 연구)

  • Oh Young-In;Shin Eun-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.5-16
    • /
    • 2005
  • Geosynthetic-reinforced and pile-supported embankments have been increasingly used and researched around the world. The inclusion of one or multiple geosynthetic reinforcements over the pile is intended to enhance the efficiency of load transfer from soft ground to piles, to reduce total and differential settlement and increase global or local stability. In this paper, the reinforcement effectiveness and arching effect of the geogrid-reinforced and pile-supported embankments have been studied in terms of field model tests and numerical analysis with varying the space between piles and reinforcement. 2-dimensional numerical analysis has been conducted using the FLAC (Fast Lagrangian Analysis of Continua) program. And load transfer mechanisms between soil-piles-geogrid were investigated. The mechanisms of load transfer can be considered as a combination of embankment soil arching, tension geogrid, and stress concentration due to the stiffness difference between pile and soft ground. Based on the field model test and numerical analysis results, it was found that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also. at the D/b=3 (D: spacing of pile cap, b: diameter of pile), the total settlement is reduced by about $40\%$ compared to that without reinforcement. For $D/b{\ge}6$, the effectiveness of geogrid reinforcement in reducing settlement is negligible.

Seepage Characteristics of Embedded Rock Layer Under the Earth Fill (성토제 하부에 매설된 사석층의 침투특성)

  • Lee Haeng-Woo;Chang Pyoung-Wuck
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.63-72
    • /
    • 2005
  • Rocks are dumped to soft marine ground in order to improve trafficability and construction conditions in the tideland reclamation construction sites. Though this rock layer under earth fill has caused in a serious seepage problems after construction, seepage behaviors of this embankment structure is not correctly investigated. Water flow through rock layers is, in general, known as Non-Darcy's flow. However, the embedded rock layer under earth fill is not known whether its flow is governed by Darcy's or Non-Darcy's law. Therefore, a numerical analysis, laboratory model test and filed investigations were performed for analyzing the those seepage characteristics in this research. Results show that there is significance of $95\%$ of confidence between observed heads and seepage rates, and the calculated ones by SAMTLE which is developed under the assumption that the water flows through the two-layer system obey the Darcy's flow. And after operating the hydraulic gradient(i) of $0.10\~0.55$ upon laboratory model, these seepage characteristics of the embedded rock layer show that Reynolds Numbers are less than 10 and the relationship between these velocities of rock layer(v) and hydraulic gradients(i) is linearly proportional with more than 0.79 of the coefficient of correlation $(R^2)$. And the Reynolds Number of the velocity calculated by the relation of v=ki in the embedded rock layer of OO sea dike is $1\~6$. It shows also laminar flow. Based on these results, it is concluded that the seepage characteristics of embedded rock layer under earth fill can be laminar and Darcy's flow.

Modification of the Hyperbolic Method for Staged Fill (단계성토 시 쌍곡선법의 개선된 해석방법)

  • Jang, Suk-Myung;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.513-523
    • /
    • 2022
  • The purpose of settlement management when treating soft ground through preloading is to determine the amount of settlement, check the progression of consolidation, and compare the settlement with the target settlement amount. Of the various methods available for predicting settlement based on measured data, the hyperbolic method was used in this study to analyze the settlement behavior of soft ground considering the creep behavior resulting from staged fill. Two versions of the method were used: the existing hyperbolic method, and a modified hyperbolic method. The existing hyperbolic method predicts the settlement amount using data for the final settlement section only during soft ground treatment through staged fill, for which the coefficient of consolidation behavior (k) was computed to give a predicted final consolidation settlement amount of Sr = 1.05 cm. In comparison, using the modified method, a predicted final consolidation settlement of Sr = 0.50 cm is obtained by considering the data for each staged fill section. These results show that the modified method considering data from the staged settlement was more accurate than the existing method considering data only from the final settlement section. This modification to the hyperbolic method therefore represents an improvement in performance over the existing method.