• Title/Summary/Keyword: 성토지반

Search Result 478, Processing Time 0.02 seconds

Characteristics of Ground Movement in High Filling Abutment on Soft Ground (연약지반상 고성토 교대구간의 지반거동 특성)

  • Heo, Yol;Song, Seokcheol;Ahn, Kwangkuk;Oh, Seungtak;Seo, Sanggu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.13-23
    • /
    • 2008
  • In this study, the centrifuge tests and numerical analyses were performed to investigate the lateral flow behavior and stability of abutment when high filling was applied on the soft ground improved by SCP. The centrifuge model tests and numerical analyses were fulfilled in the case of the back of abutment filled by EPS (case 1) and soil (case 2), and the potentiometer was installed on the abutment and fill to measure the vertical and horizontal displacement at the top of abutment. As a result of the centrifugal tests, the horizontal displacement of abutment in the case 1 was 1.4cm that is almost coincide with the results of numerical and satisfy the allowable standard. On the other hand, the horizontal displacement of abutment in the case 2 was 12 cm that is 18% greater than that of numerical analysis and exceed the allowable standard. As a result of analysis, the maximum horizontal displacement of pile was 1.26 cm in case 1 that satisfies the criterion of allowable horizontal displacement (1.5 cm). In contrast, the maximum horizontal displacement of pile was 1.005 m in case 2 that greatly exceeds the allowable horizontal displacement.

  • PDF

The Determination of Required Tensile Strength of Geosynthetic Reinforcements for Embankment on Soft Ground (연약지반 보강성토에서 섬유보강재 소요인장강도의 결정)

  • 이광열;황재홍;구태곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.379-385
    • /
    • 2003
  • In the existing method to design geosynthetic reinforced embankment, the required strength of reinforcements is determined by vertical stress only rather than strain. This strength is not in accord with tensile strength that behaves as reinforcement in earth structures. The reinforcement and adjacent soil on the failure plan behave in one unit at the initial stress phase but they make a gap in strain as stress increases. This issue may cause a big impact as a critical factor on geosynthetic reinforcement design in earth structures. The quantitative analysis on strain behavior was performed with a PET Mat reinforced embankment on soft ground. From this study, several outstanding discussions are found that tensile strength of reinforcement governs the failure of embankment when the soil stress is greater than failure stress. Also the optimum required tensile strength of geosynthetic reinforcement(Tos) should be determined by stress, displacement, displacement gap and safety factor of soil-PET Mat at the location of PET Mat.

An Experimental Study on the Modelling for the Prediction of the Behaviour of EPS (EPS의 거동 예측 모델에 관한 실험적 연구)

  • 천병식;임해식
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.127-136
    • /
    • 1996
  • Recently, EPS which has unit weight of only 20~30kg/m3, is used for acquiring the safety of settlement and bearing capacity, In Korea, EPS was first used in 1993 as backfill material for abutment that was constructed on soft ground in Inchon. Since then EPS has been used increasingly as backfill material. However, adequate modelling has not yet been proposed for the prediction of the behavior of EPS. Only it's design strength was proposed as the results of unconfined strength and creep test. Accordingly this paper executed triaxial compression test on EPS with various density and confining pressure. Through the analysis of test data the behavior of EPS for strainstress, tangential modulus and poisson's ratio can be expressed in functions with parameters of density and confining pressure of EPS. From these results, this paper proposed a nonliner model describing the behavior of EPS.

  • PDF

Behaviour of the Excess Pore Pressure Induced by Sand Mat on the Soft Clay (점토지반 샌드매트의 간극수압 거동)

  • Kim, Hyeong-Joo;Lee, Min-Sun;Paek, Pil-Soon;Jeon, Hye-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.55-62
    • /
    • 2006
  • The design of sand mat should be reviewed by the behaviour of excess pore pressure which is obtained by combining characteristics of soft ground with the permeability of sand mat. In this paper, in order to investigate the distribution of hydraulic gradient of sand mat, a banking model test was performed using dredged sand as materials of sand mat, and these results were compared by the numerical analysis results utilizing Terzaghi's consolidation equation. The results show that the pore pressure was influenced by the settlement increasing in the central area of sand mat as the height of embankment increases, and uprising speed of excess pore pressure due to residing water pressure is delayed compared with the results of numerical analysis. Finally, the construction of sand mat should be spreaded to reduce the increased hydraulic gradient at the central area of embankment.

Method of Reducing Lateral Displacement of Abutment Constructed on Marine Clay Deposits (해안 연약지반상의 교량 구조물 변위 억제)

  • 장용채
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.337-348
    • /
    • 1998
  • Since 1970s, though many effective construction methods have been established to solve soft ground problems which had occurred in the off shore land reclamation and on shore highway construction, lateral movement of structure on soft ground is still a big problem to engineers. In this study an applicability of criteria for determining the lateral movement of the structure in soft ground is examined and most measured data is obtained from 140 bridge abutments in highway construction sites. Characteristics and effectiveness of existing methods that used for deciding amount of lateral movements of abutment are analyzed using the obtained data. From the analysis, a proper method to prevent lateral movement is proposed. This method is confirmed on several case histories which were constructed on marine clay.

  • PDF

통영시 방조제 매립부 지반의 분포 특성 연구

  • 김성욱;안윤희;김근수;이현재;최은경;이창섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.153-155
    • /
    • 2001
  • 법송 방조제 조성지역 매립부 지반의 측방 및 수직변화를 조사하였다. 매립부 지반은 측방 및 수직으로 구성광물과 풍화정도에서 차이를 보여준다 이러한 차이는 기원암의 차이를 반영하는 것으로 편광현미경분석, 주사전자현미경분석, X-선회절분석에서 공통적으로 인지 할 수 있다. 해성점토층의 출현심도는 10m의 일정한 심도로 분포하여 방조제 축조이전 해성층이 수평층이었음을 지시하며 이러한 심도는 매립층의 하한선이 된다. 매립물질의 토색,토성. 풍화도, 구성광물차이에 의한 매립부 지반은 모두 같은 모재를 사용하여 매립되지 않았음을 지시하며 매립물질이 층서구조를 가지고 있는 점은 방조제의 수 차례에 걸쳐 조성되었음을 지시한다. 조사 결과 방조제 코어부와 성토부는 서로 다른 시기에 매립되었을 것으로 추정되며 성토부의 조성은 서로 다른 기원지의 모재를 사용하여 3회 이상에 걸쳐 시행되었음을 의미한다.

  • PDF

Lateral long term behavior of Driven H-Piles in Embankment (성토지반에 타입된 H 말뚝의 횡방향 장기지지거동)

  • 박영호;정경자;김주경;김동인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.575-582
    • /
    • 2002
  • To find a lateral long term behavior of driven H-piles in embankment, inclinometer is installed at pile and measurement is done during a year. When behavior of measured slope angles is in accord with behavior of nonlinear p-y curves(Reese, Murchison and O'Neil, Matlock's p-y analysis), maximum displacement of pile head, maximum stresses and maximum bending of pile obtained from the numerical analysis are shown. As results, maximum lateral displacement at pile head, maximum stress and maximum bending moment of pile are shown linear behavior. And maximum lateral load, maximum lateral displacement, and maximum bending moment at pile head obtained from the numerical analysis are 8∼12.4tonf, 9∼10.1mm, and 10.39∼12.67tonf-m per pile according to the curves, respectively.

  • PDF

Behavioral Characteristics of Improved Ground by Fully Penetrated and Partially Penetrated SCP according to Construction Stage (관통SCP와 미관통SCP로 개량된 지반의 시공단계별 거동 특성)

  • Park, Jongseo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.51-57
    • /
    • 2012
  • In this study, numerical analysis was carried out for both partially penetrated SCP(sand compaction pile) and fully penetrated SCP constructed into the ground. Midas GTS was used as a FEM analysis program, which is widely used in geotechnical engineering. For the analysis, ground displacement, effective stress and pore water pressure at the time both just after embankment on the ground and 365days later were compared and analyzed. As the results, the effect regarding partially penetrated SCP was similar to the effect regarding fully penetrated SCP under the bottom of the center of embankment when considering the safety towards shear failure.

시멘트를 이용한 지반개량 및 시멘트계 건설폐기물의 재활용에 의한 환경오염

  • Min, Soo-Hong;Moon, Se-Heum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.267-267
    • /
    • 2008
  • 시멘트를 이용한 지반개량 및 시멘트계 건설폐기물을 (예, 폐콘크리트, 및 시멘트 개량토 등) 성토재로 재활용하는 경우 지반 환경에 미칠 수 있는 영향으로는 (1) 시멘트에 함유된 6가 크롬($Cr^{6+}$) 및 (2) 강알칼리 물질의 용출이 있을 수 있다. 특히 $Cr^{6+}$의 경우 인체에 치명적인 발암성물질로 알려져 있어 이에 따른 주의가 필요하다. 최근 일본에서는 시멘트의 $Cr^{6+}$에 의한 지반오염이 우려됨에 따라 2000년 시멘트계 고화재를 지반에 사용하는 경우와 개량된 토양을 재이용하는 경우에는 토양환경기준을 만족하도록 규제하고 있다. $Cr^{6+}$외의 시멘트계 물질에 의한 환경오염으로는 강알칼리 물질의 유출이 있을 수 있다. 시멘트 개량토나 폐콘크리트 등의 건설폐기물을 성토재로 재활용하는 경우, 강우의 유입에 따라 구성물질인 수산화칼슘이 용해되어 높은 pH의 유출수가 발생한다. 강알칼리 유출수가 주변 하천 등으로 유입되는 경우 심각한 환경문제를 유발할 수 있으므로 이에 대한 기술적 검토가 필요하다. 본 발표에서는 시멘트계 물질에 의한 일본의 지반환경오염 사례 및 대책을 소개하였다.

  • PDF

A Study on the Prediction of Settlement Horizontally Divided Soft Ground (수평 분할된 연약 점성토 지반 침하 예측에 관한 연구)

  • Ryu, Jaeha;Kim, Minsoo;Kim, Yeonjoong;Jung, Chankee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.8
    • /
    • pp.13-19
    • /
    • 2021
  • In the case of construction on soft ground - such as national expressways sponsored by Social Overhead Capital (SOC) - many problems occur due to excessive settlement: therefore, an accurate settlement prediction has a major impact on the selection of improvement methods, project budget and construction period. Most of the settlement prediction methods currently used in projects apply Terzaghi's Theory of One-Dimensional Consolidation which assumes the uniformity of the depth of the soft ground. However, the results of soft ground settlement predictions vary when the target layer is divided into multiple horizontal layers. This study analyzed the change in the consolidation settlement behavior according to the horizontal division of soft ground as well as with different loading height.