• Title/Summary/Keyword: 성토재료

Search Result 140, Processing Time 0.02 seconds

Improvement of Rice Seedling Emergence by Seed Coating Materials in Direct Seeding into Flooded Paddy Soil (벼 담수토중직파재배시 종자분의 재료에 따른 입모향상 효과)

  • 원종건;최충돈;이외현;이상철;김칠용;최부술
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.286-291
    • /
    • 1997
  • This experiment was carried out to improve seedling emergence and establishment in paddy rice sown into puddled soil. Rice seed were coated with CaO$_2$, KNO$_3$ and acid sulphate soil. When coated seeds with CaO$_2$, KNO$_3$ and acid sulphate soil were sown into puddled soil, soil redox potential was increased and the period of oxidizing was longer in KNO$_3$ than that of any other soils. pH was higher in control than that of coated seeds with CaO$_2$, KNO$_3$ and acid sulphate soil. It seems that the coated seeds oxidize soil locally, thus prohibit soil reduction. Seedling emergence was improved by seed coating materials. Emergence date was 8 days after seeding(DAS) in CaO$_2$, 14 DAS in acid sulphate soil, 21 DAS in KNO$_3$ coated seed and 20 DAS in uncoated seed, respectively. Emergence rate was highest in CaO$_2$ coated seed(80%) followed by acid sulphate soil coated seed(61%), while control(46%) and KNO$_3$(42%) were very poor. This result would be interpreted as the difference in oxidizing power among coating agents ; CaO$_2$ and acid sulphate soil may oxidize weakly and shortly while KNO$_3$ may oxidize soil strongly and persistantly. Our results suggested that local oxidizing around rice seed sown into puddled soil enhanced seedling emergence and also found a possibility to promote seedling emergence with acid soil.

  • PDF

Deformation Characteristics of Earth Dam Raised by Non-Homogeneous Fill Materials (비균질 재료로 숭상(嵩上)한 흙 댐의 변형 특성)

  • 장옥성;이종규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.167-180
    • /
    • 2004
  • In this study finite element analysis using hyperbolic model was performed to predict the characteristics of stress-strain behaviour on concrete face earth dam (CFED : a tentative name) raised with coarse-grained materials corresponding to the face slab bedding zone of concrete face rockfill dam (CFRD). The results of finite element analysis were compared with field monitoring data, and the comparison showed a good agreement. And, the analysis results including locus of maximum displacement, maximum stress, stress concentration, and irregular load transfer would be used to devise rational field monitoring schemes for construction management and quality control during construction of CFED.

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.

Application of EPS Considering Long-term Durability (장기내구성을 고려한 EPS의 현장 적용성)

  • Chun, Byungsik;Jung, Changhee;Ahn, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • L/EPS, manufactured in the shape of block and used for civil engineering, is a lightweight material with an excellent resistance to compression, and provides a superb self-sufficient stability. EPS is a suitable material capable of resolving the problem of settlement and lateral flow if it is applied as the soil on soft ground. The Korean Standards (KS) has not yet proposed any testing method for use of EPS as an engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. The design criteria for EPS has been established and applied through the trial construction of KHC (Korea Highway Corporation) and quality test of manufacturer, but most studies on them have been confined to factory products. This study is focused on comparing and analyzing long-term durability by conducting cyclic load test, freezing and thawing test, absorption rate test and others. EPS used in the test was chosen from construction sites and factory products, focusing on the long-term durability of EPS depending on the passage of time. Unconfined compression test results indicated that the strength of collected samples was lower than factory products. While the triaxial compression test results indicated that the shear strength increased in proportion to the increase of confining pressure, and factory products had declining shear strength as the confining pressure rose.

  • PDF

Filed Applicability Evaluations of Restoration Material for Underground Cavities Formed by Ground Subsidence (지반침하로 인한 지하공동 복구재료의 현장적용성 평가)

  • Bang, Seongtaek;Baek, Seungju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.3
    • /
    • pp.5-11
    • /
    • 2020
  • Recently, ground pits that have been occurring frequently in urban areas are hindering traffic flow and causing property damages and loss of human life, acting as factors that are threatening the safety of citizens. Therefore, sunken ground must be quickly restored and provisions must be made for additional damage but current domestic detailed standards regarding ground pits and accurate definitions regarding causes and measures to be taken for reoccurrences are lacking. Restoration methods of sunken ground include backfilling by reusing sunken soil or other fill material and paving the road and while this is the most often used method, this only prevents ground from sinking temporarily and can not serve as a fundamental solution. Also, additional ground pits can occur on ground that is reinforced using this method due to faulty backfill material or faulty hardening. This study used Eco-friendly High-Strength Material (EHSM) as restoration material that can be used in the restoration of underground cavities that have occurred due to ground subsidence to analyze the engineered characteristics of modified dredging clay and test pieces made from changed ratios of EHSM and weathered granite soil were uniaxial compression tests were conducted and freezing-thawing tests were conducted to study strength properties according to environmental changes of restoration material, and after tests were concluded by each level, uniaxial compression tests and dynamic elasticity tests were conducted for intensity analysis. Also, to evaluate strength characteristics of the restored ground, dynamic plate load tests were conducted to verify the improvement effectiveness of the restored ground.

Building of Large Triaxial Testing Apparatus and Static Triaxial Testing for Railway Ballast (대형삼축압축시험장비 구축과 도상자갈의 정적압축시험 평가)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Il-Wha;Lee, Jun-S.;Park, Jae-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.84-91
    • /
    • 2010
  • We built multi-purpose large triaxial testing system that can test and evaluate various geotechnical design parameters such as shear strength, deformation modulus and stress-strain behaviour for large diameter granular materials, which are the most commonly used construction materials in the railway, road embankments. The details of the built testing system and the results obtained from static triaxial test carried out for gneiss ballast material are discussed within the scope of this paper. Ballast is hardly saturated and is confined at low overburden pressure, since the depth is shallow and the permeability is very high. Herein we ascertained that the confining pressure can effectively be controlled by vacuum. The rational trend could be checked up through triaxial test results such as shear strength, deformation, and particle breakage. And the shear strength envelope could be non-linearly represented with the parent rock strength, confining pressure of the triaxial test and proper parameters.

Parametric Study of MD Constitutive Model for Coarse-Grained Soils (조립재료에 대한 MD구성모델의 매개 변수 연구)

  • Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • Coarse-grained soils are typical engineering materials commonly used in many civil engineering applications such as structural fills, subgrade and drainage fills for dam, railway and bridge. Various researches have been performed with related to constitutive laws for numerical analysis of such structures. This paper presents a parametric study for a constitutive model for coarse grained materials. The model is a kind of the bounding surface models based on critical state theory. A distinct feature of the model is to capture the response of coarse-grained materials with different void ratios and confining pressures using a single set of model parameters. The model behavior is defined with a set of elastic parameters, critical state parameters, and model-specific parameters. The parametric study was performed for the model-specific parameters. The result of parametric study shows that the model is capable to capture stress-dilatancy behavior and kinematic-hardening under non-associative plastic flow.

Compositional Characterization Analysis of Wall Soils Excavated in Poongnatoseong Earthen Castle, Seoul (풍납토성 성벽 토양의 성분 특성 연구)

  • Seo, Min Seok;Lee, Han Hyeong;Hu, Jun Soo;Kim, Soo Keung;Yoo, Young Mi;Lee, Seong Jun
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.4
    • /
    • pp.114-125
    • /
    • 2012
  • The purpose of this study is to analysis chromaticity, granulometry, main chemical composition and mineral crystal structure of wall soils excavated from Poongnatoseong Earthen Castle using color reader, XRD, particla size analyzer. The analysed soils of Poongnatoseong Earthen Castle were yellowish brown and isabella. All samples were sands or sands including silty soil(SW~SC) and showed similar granulometry, chemical composition and mineral crystal structure, which were characteristics of construction materials suitable for modern road or airstrip. As resulting in comparison with 4 factors from chromaticity, granulometry, main chemical composition and mineral crystal structure, we decided that the control soils(PNS) near by Poongnatoseong Earthen Castle were not to be used for the castle wall construction We presumed that there was a huge soil distribution area for the wall construction around Poongnatoseong Earthen Castle. For further study, we will make a comparison analysis all kinds of soil characteristics. And then we can understand correctly about wall soils producing area, construction method, repair method and time of Poongnatoseong Earthen Castle.

A Study on the Application of Numerical Model to Predict Behaviour of EPS (EPS 거동 예측 모델의 적용성에 대한 연구)

  • Cheon, Byeong-Sik;Yu, Han-Gyu;Im, Hae-Sik
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.185-198
    • /
    • 1996
  • EPS is increasingly used as a filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, which, in turn, increases the bearing capacity and reduces the settlement. EPS can also be used as a backfill material for retaining walls and abutments to reduce the horizontal earth pressure. However, there is no rational application for the selection of the EPS fill which is essential to the selection of the filling configuration and the settlement calculation. In this paper, therefore, the nonlinear numerical model developed from the results of triaxial compression tests is applied to the construction of EPS and verified through the comparison between the prediction and in-situ measurements.

  • PDF

Friction Characteristics of Geogrid -Light Weight Soil Mixed with Small Pieces of Waste EPS (지오그리드-폐 EPS조각 혼합경량토의 마찰특성)

  • 김홍택;방윤경
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.163-184
    • /
    • 1996
  • In this study, physical and geotechnical properties of the light weight mixed soil( weathered granite soil mixed with small pieces of waste EPS) were analyzed by laboratory experiments to examine its suitability for backfill materials of the reinforced-earth walls. Friction characteristics of geogrid-light weight sized soil were also investigated by performing the pullout tests for two types of geogrids having different flexural rigidity. Also a procedure was proposed to evaluate friction strength between geogrid and light weight miffed soil by using a stress-strain relationship of the orthotropic composite material subjected to both longitudinal and vertical loadings. By the procedure proposed in this study, values of the calibration coefficients ul and uf applicable for the evaluation of friction strengths between two types of geogrids and light weight mixed soils were further presented.

  • PDF