• 제목/요약/키워드: 성층혼합 압축착화

검색결과 18건 처리시간 0.02초

LPG-DME 성층혼합 압축착화 엔진 (LPG-DME Stratified Charge Compression Ignition Engine)

  • 배충식;염기태
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.672-679
    • /
    • 2007
  • The combustion characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge and stratified charge conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion flame region according to the injection timing of LPG. The hydrocarbon emission of stratified charge combustion was lower than that of homogeneous charge combustion. However, the carbon monoxide and nitrogen oxide emission of stratified charge combustion were slightly higher than those of the homogeneous charge region. The indicated mean effective pressure was reduced at stratified charge region, while it was almost same level as the homogeneous charge combustion region at diffusion combustion region. The start of combustion timing of the stratified charge combustion and diffusion combustion region were advanced compared to the homogeneous charge combustion. It attributed to the higher cetane number and mixture temperature distribution which locally stratified. However, the knock intensity was varied as the homogeneity of charge was increased.

LPG-DME 압축착화 엔진의 성층화 영향 (Fuel Stratification Effects of LPG-DME Compression Ignition Engine)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.78-85
    • /
    • 2008
  • The exhaust emission characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge, stratified charge and diffusion combustion conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion combustion region according to the injection timing of LPG. The HC emission was reduced with LPG stratification. However, the carbon monoxide and particulate matter emissions were increased. The ignition timing was advanced with LPG stratification. This advance combustion was because of charge temperature and cetane number stratification with LPG.

열적성층화가 DME/n-Butane 예혼합압축자기착화연소에 미치는 영향에 관한 연구 (Study on the Effect of Thermal Stratification on DME/n-Butane HCCI Combustion)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1035-1042
    • /
    • 2010
  • HCCI 엔진연소에서 열적성층화 효과는 노킹을 회피하는 수단으로서 생각되고 있다. 본 연구에서는 DME 와 n-Butane 을 연료로 하는 HCCI 엔진연소의 열적성층화 효과를 조사하였다. 예혼합기가 연소실내부에 투입되고 부력의 효과를 이용하여 연소실 내부에 열적성층화를 형성한다. 그 뒤에 피스톤의 압축에 의해서 단열압축 시킨 후 연소실압력과 2 차원화학발광법을 계측하여 해석하였다. 열적성층화가 존재하는 경우에는, 저온산화반응과 고온산화반응의 시작시기가 균질한 경우에 비해서 진각되었고 연소기간은 길어졌다. 발광의 시작은 온도가 높은 곳에서부터 시작하여 온도가 낮은 곳으로 전파 되는 것을 확인하였고 발광기간도 길어짐을 확인하였다.

이차원발광화상계측에 의한 예혼합압축자기착화연소의 연소실내 혼합기의 불균질성에 관한 연구 (Using Two-Dimensional Chemiluminescence Images to Study Inhomogeneity in Mixture Gas in the Combustion Chamber for HCCI Combustion)

  • 임옥택;노리마사 이이다
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1043-1050
    • /
    • 2010
  • HCCI엔진에는 농도성층화와 열적성층화가 존재하고, 이것들은 착화와 연소과정에 영향을 미치고 있다. 본 연구에서는 예혼합기의 불균질성이 HCCI연소과정에 미치는 영향에 대해서 조사하였다. 우선 4행정광학엔진을 이용하여 잔류가스가 있는 경우와 급속압축장치를 이용하여 잔류가스가 없는 경우의 예혼합기의 불균질성에 대하여 비교분석하였다. DME를 연료로 이용하고 프래밍카메라를 사용하여 2차원화학발광이미지를 취득하였다. 그 결과, 잔류가스가 있는 불균질 한 경우에 4행정엔진실험에서는 연소현상이 공간적으로 연소현상의 시간차이가 발생하였다. 잔류가스가 없는 급속압축장치의 실험에서는 4행정기관의 결과에 비해서 더 적은 공간적인 변화가 존재하는 것을 알 수 있었다.

예혼합기의 열적성층화가 PRF연료의 예혼합압축자기착화에 미치는 영향 (Research about Thermal Stratification Effect on HCCI Combustion Fueled with Primary Reference Fuel)

  • 임옥택
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.157-163
    • /
    • 2008
  • The HCCI combustion mode poses its own set of narrow engine operating by knocking. In order to solve this, inhomogeneity method of mixture and temperature is suggested. The purpose of this research is to get fundamental knowledge about the effect of thermal stratification on HCCI combustion of PRF -Air mixture. The temperature stratification is made by buoyancy effect in combustion chamber of RCM. The analysis items are pressure, temperature of in-cylinder gas and combustion duration. In addition, the structure of flames using the two dimensional chemiluminescence's images by a framing camera are analyzed. Under stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous. Further, the LTR period of homogeneous conditions became shorter than that of the stratified conditions. With the case of homogeneous condition, the luminosity duration becomes shorter than the case of stratified condition. Additionally, under stratified condition, the brightest luminosity intensity is delayed longer than at homogeneous condition.

Multi zone Modeling을 이용한 흡기관내의 과급이 온도성층화를 갖는 예혼합압축자기착화엔진에 미치는 영향에 관한 연구 (Effect of the Boost Pressure on Thermal Stratification on HCCI Engine Using Multi-Zone Modeling)

  • 권오석;임옥택
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.248-254
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, a pressure rise rate is a major limitation for high load range and power reduction. Recently, we were able to reduce the pressure rise rate using thermal stratification. Nevertheless, this was insufficient to produce high power. In this study, the reduction of the pressure rise rate using thermal stratification was confirmed and the HCCI engine power was increased using the boost pressure. The rate and engine power were produced by CHEMKIN and modified SENKIN. As a result of increasing the boost pressure, a higher IMEP was attained while the pressure rise rate increased only slightly in the HCCI with thermal stratification.

Multi Zone Modeling을 이용한 온도 성층화의 효과를 갖는 예혼합압축자기착화엔진의 압력상승률 저감에 대한 모사 (Effect of Thermal Stratification for Reducing Pressure Rise Rate in HCCI Combustion Based on Multi-zone Modeling)

  • 권오석;임옥택
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.32-39
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, HCCI's operating range is limited by an excessive rate of pressure rise during combustion and the resulting engine knock in high-load. The purpose of this study was to gain a understanding of the effect of only initial temperature and thermal stratification for reducing the pressure-rise rate in HCCI combustion. And we confirmed characteristics of combustion, knocking and emissions. The engine was fueled with Di-Methyl Ether. The computations were conducted using both a single-zone model and a multi-zone model by CHEMKIN and modified SENKIN.

DME 예혼합 압축착화 엔진에서 다단분사를 통한 연료 성층화 (Fuel stratification by multiple injection in DME HCCI engine combustion)

  • 윤현숙;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.311-312
    • /
    • 2012
  • Homogeneous charge compression ignition combustion with multiple-injection strategy using dimethyl-ether was investigated in a single cylinder direct-injection compression-ignition engine. The combustion performance and exhaust emissions were tested by varying the post injection conditions. The experiments were carried out under low load and low speed conditions. By the late post injection near the top dead center, the combustion phase was retarded and lengthened, and the fuel conversion efficiencies improved without the drawbacks of exhaust emissions increment.

  • PDF

EGR 성층화급기에 의한 DME HCCI 연소시의 압력 상승률 저감에 관한 연구 (A Study about the Effects of EGR Stratification on Reducing the Pressure RIse Rate of DME HCCI Combustion)

  • 임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.895-904
    • /
    • 2011
  • Stratified charge has been thought as one of the ways to avoid a sharp pressure rise on HCCI combustion. The purpose of this study is to evaluate the potential of stratified charge for reducing PRR on HCCI combustion. The pre-mixture with thermal, mixing and EGR stratifications is charged in Rapid Compression Machine. After that, the pre-mixture is compressed and in that process, in-cylinder gas pressure and temperature are analyzed. Additionally numerical calculation with multi-zones modeling is run to know the potential of stratified charge for reducing PRR.

급속압축장치를 이용한 HCCI기관에서 층상혼합기에 의한 압력상승률의 저감효과에 대한 연구 (An Investigation of a Stratified Charge Mixture's HCCI Combustion Processes Using a Rapid Compression Machine)

  • 임옥택
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.1-8
    • /
    • 2010
  • The introduction of mixture heterogeneity has been considered to be one of the ways to avoid knocking, as it reduces the pressure rise rate in HCCI Combustion. The purpose of this research was to investigate the effects of heterogeneity, in particular thermal stratification and fuel strength stratification, on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in the Combustion Chamber of a Rapid Compression Machine with three kinds of pre-mixture, each with different properties. The stratified charge mixture was adiabatically compressed, throughout which cylinder gas pressure and two-dimensional chemiluminescence images were measured and analyzed.