• Title/Summary/Keyword: 성층급기

Search Result 17, Processing Time 0.031 seconds

A Study on Driving Stability of In-cylinder Direct Injection Stratified Charge Gasoline Engine - Effects on HR rate and $COV_{imep}$ of Fuel Injection Pressure and Load Variations - (연소실 직접분사식 성층급기 가솔린기관의 구동안정성에 관한 연구 -열방출율과 도시평균유효압력 변동에 미치는 연료분사압력과 부하변동의 영향-)

  • 이상만;이근오
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • In general, the stratified charge for direct injection gasoline engine should be introduced to achieve ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, a reflector was adapted on cylinder head. An installation of the reflector in front of the injector nozzle leads the mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally ich to ignite while the lean mixture is wholly introduced into the combustion chamber. In this paper, the characteristics of combustion is analyzed with the variations of injection pressure and load in a stratified-charge direct injection single cylinder gasoline engine.

  • PDF

A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load - (연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 -)

  • Lee, Sang Man;Jeong, Young Sik;Chae, Jae Ou
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.

A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine (직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구)

  • LEE, MINHO;KIM, KIHO;HA, JONGHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.

Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector (가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

Study on Combustion Characteristics with Fuel Injection Timing in a RI-CNG Engine (RI-CNG 엔진에서 연료 분사시기에 따른 연소특성에 관한 연구)

  • Park, J.S.;Ha, D.H.;Yeum, J.K.;Ha, J.Y.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.5-11
    • /
    • 2008
  • The RI gasoline engine haying a sub-chamber had a high cycle variation due to the difficulty of the residual gas scavenge in the sub-chamber. To solve this problem and improve the combustion performance of RI engine, we devised a method to inject directly CNG fuel into the sub-chamber. A DI diesel engine of single cylinder was converted into a RI-CNG engine and an electronic control unit for the engine was manufactured. In this study, the combustion characteristics of the RI-CNG engine were investigated with the injection timings and air excess ratios at the load conditions of 50% throttle open rate and 1700rpm. As the results from this study, the RI-CNG engine worked reliably under the condition of the ignitable lean limit of $\lambda=1.7$ by showing the $COV_{imep}$ below about 5%. And the highest thermal efficiency could be obtained in the injection timing that produced the high imep and the low $COV_{imep}$ at the same time. The CO emission concentration indicated very low values and the THC and $NO_x$ showed an opposite pattern. With a view to improving the thermal efficiency and reducing the harmful emissions, the proper control region of the ignition timing and the mixture ratio were nearly ATDC $20^{\circ}\sim50^{\circ}$ and $\lambda=1.4$ respectively.

  • PDF

The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine (직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향)

  • Kang, Jeong-Ho;Yoon, Soo-Han;Lee, Joong-Soon;Park, Jong-Sang;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

An Study on Spray and Combustion Characteristics of Direct Injection LPG under Low Pressure Injection Condition (저압 분사조건에 따른 직접분사 LPG의 분무 및 연소특성 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk;Lee, Jin-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • Liquefied petroleum gas is regarded as a promising alternative fuel as it is eco-friendly, has good energy efficiency and output performance, practically and has high cost competitiveness over competing fuels. In spark-ignition engine, direct injection technology improves engine volumetric efficiency apparently and operates engine using the stratified charge that has relatively higher combustion efficiency. This study designed a combustion chamber equipped with visualization system by applying gasoline direct injection engine principle. In doing so, the study recorded and analyzed ignition probability and flame propagation process of spark-ignited direct injection LPG in a digital way. The result can contribute as a basic resource widespread for spark-ignited direct injection LPG engine design and optimization extensively.