• Title/Summary/Keyword: 성장

Search Result 30,242, Processing Time 0.059 seconds

Effects of firm strategies on customer acquisition of Software as a Service (SaaS) providers: A mediating and moderating role of SaaS technology maturity (SaaS 기업의 차별화 및 가격전략이 고객획득성과에 미치는 영향: SaaS 기술성숙도 수준의 매개효과 및 조절효과를 중심으로)

  • Chae, SeongWook;Park, Sungbum
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.151-171
    • /
    • 2014
  • Firms today have sought management effectiveness and efficiency utilizing information technologies (IT). Numerous firms are outsourcing specific information systems functions to cope with their short of information resources or IT experts, or to reduce their capital cost. Recently, Software-as-a-Service (SaaS) as a new type of information system has become one of the powerful outsourcing alternatives. SaaS is software deployed as a hosted and accessed over the internet. It is regarded as the idea of on-demand, pay-per-use, and utility computing and is now being applied to support the core competencies of clients in areas ranging from the individual productivity area to the vertical industry and e-commerce area. In this study, therefore, we seek to quantify the value that SaaS has on business performance by examining the relationships among firm strategies, SaaS technology maturity, and business performance of SaaS providers. We begin by drawing from prior literature on SaaS, technology maturity and firm strategy. SaaS technology maturity is classified into three different phases such as application service providing (ASP), Web-native application, and Web-service application. Firm strategies are manipulated by the low-cost strategy and differentiation strategy. Finally, we considered customer acquisition as a business performance. In this sense, specific objectives of this study are as follows. First, we examine the relationships between customer acquisition performance and both low-cost strategy and differentiation strategy of SaaS providers. Secondly, we investigate the mediating and moderating effects of SaaS technology maturity on those relationships. For this purpose, study collects data from the SaaS providers, and their line of applications registered in the database in CNK (Commerce net Korea) in Korea using a questionnaire method by the professional research institution. The unit of analysis in this study is the SBUs (strategic business unit) in the software provider. A total of 199 SBUs is used for analyzing and testing our hypotheses. With regards to the measurement of firm strategy, we take three measurement items for differentiation strategy such as the application uniqueness (referring an application aims to differentiate within just one or a small number of target industry), supply channel diversification (regarding whether SaaS vendor had diversified supply chain) as well as the number of specialized expertise and take two items for low cost strategy like subscription fee and initial set-up fee. We employ a hierarchical regression analysis technique for testing moderation effects of SaaS technology maturity and follow the Baron and Kenny's procedure for determining if firm strategies affect customer acquisition through technology maturity. Empirical results revealed that, firstly, when differentiation strategy is applied to attain business performance like customer acquisition, the effects of the strategy is moderated by the technology maturity level of SaaS providers. In other words, securing higher level of SaaS technology maturity is essential for higher business performance. For instance, given that firms implement application uniqueness or a distribution channel diversification as a differentiation strategy, they can acquire more customers when their level of SaaS technology maturity is higher rather than lower. Secondly, results indicate that pursuing differentiation strategy or low cost strategy effectively works for SaaS providers' obtaining customer, which means that continuously differentiating their service from others or making their service fee (subscription fee or initial set-up fee) lower are helpful for their business success in terms of acquiring their customers. Lastly, results show that the level of SaaS technology maturity mediates the relationships between low cost strategy and customer acquisition. That is, based on our research design, customers usually perceive the real value of the low subscription fee or initial set-up fee only through the SaaS service provide by vender and, in turn, this will affect their decision making whether subscribe or not.

Export Control System based on Case Based Reasoning: Design and Evaluation (사례 기반 지능형 수출통제 시스템 : 설계와 평가)

  • Hong, Woneui;Kim, Uihyun;Cho, Sinhee;Kim, Sansung;Yi, Mun Yong;Shin, Donghoon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.109-131
    • /
    • 2014
  • As the demand of nuclear power plant equipment is continuously growing worldwide, the importance of handling nuclear strategic materials is also increasing. While the number of cases submitted for the exports of nuclear-power commodity and technology is dramatically increasing, preadjudication (or prescreening to be simple) of strategic materials has been done so far by experts of a long-time experience and extensive field knowledge. However, there is severe shortage of experts in this domain, not to mention that it takes a long time to develop an expert. Because human experts must manually evaluate all the documents submitted for export permission, the current practice of nuclear material export is neither time-efficient nor cost-effective. Toward alleviating the problem of relying on costly human experts only, our research proposes a new system designed to help field experts make their decisions more effectively and efficiently. The proposed system is built upon case-based reasoning, which in essence extracts key features from the existing cases, compares the features with the features of a new case, and derives a solution for the new case by referencing similar cases and their solutions. Our research proposes a framework of case-based reasoning system, designs a case-based reasoning system for the control of nuclear material exports, and evaluates the performance of alternative keyword extraction methods (full automatic, full manual, and semi-automatic). A keyword extraction method is an essential component of the case-based reasoning system as it is used to extract key features of the cases. The full automatic method was conducted using TF-IDF, which is a widely used de facto standard method for representative keyword extraction in text mining. TF (Term Frequency) is based on the frequency count of the term within a document, showing how important the term is within a document while IDF (Inverted Document Frequency) is based on the infrequency of the term within a document set, showing how uniquely the term represents the document. The results show that the semi-automatic approach, which is based on the collaboration of machine and human, is the most effective solution regardless of whether the human is a field expert or a student who majors in nuclear engineering. Moreover, we propose a new approach of computing nuclear document similarity along with a new framework of document analysis. The proposed algorithm of nuclear document similarity considers both document-to-document similarity (${\alpha}$) and document-to-nuclear system similarity (${\beta}$), in order to derive the final score (${\gamma}$) for the decision of whether the presented case is of strategic material or not. The final score (${\gamma}$) represents a document similarity between the past cases and the new case. The score is induced by not only exploiting conventional TF-IDF, but utilizing a nuclear system similarity score, which takes the context of nuclear system domain into account. Finally, the system retrieves top-3 documents stored in the case base that are considered as the most similar cases with regard to the new case, and provides them with the degree of credibility. With this final score and the credibility score, it becomes easier for a user to see which documents in the case base are more worthy of looking up so that the user can make a proper decision with relatively lower cost. The evaluation of the system has been conducted by developing a prototype and testing with field data. The system workflows and outcomes have been verified by the field experts. This research is expected to contribute the growth of knowledge service industry by proposing a new system that can effectively reduce the burden of relying on costly human experts for the export control of nuclear materials and that can be considered as a meaningful example of knowledge service application.

A Study on the Regional Characteristics of Broadband Internet Termination by Coupling Type using Spatial Information based Clustering (공간정보기반 클러스터링을 이용한 초고속인터넷 결합유형별 해지의 지역별 특성연구)

  • Park, Janghyuk;Park, Sangun;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.45-67
    • /
    • 2017
  • According to the Internet Usage Research performed in 2016, the number of internet users and the internet usage have been increasing. Smartphone, compared to the computer, is taking a more dominant role as an internet access device. As the number of smart devices have been increasing, some views that the demand on high-speed internet will decrease; however, Despite the increase in smart devices, the high-speed Internet market is expected to slightly increase for a while due to the speedup of Giga Internet and the growth of the IoT market. As the broadband Internet market saturates, telecom operators are over-competing to win new customers, but if they know the cause of customer exit, it is expected to reduce marketing costs by more effective marketing. In this study, we analyzed the relationship between the cancellation rates of telecommunication products and the factors affecting them by combining the data of 3 cities, Anyang, Gunpo, and Uiwang owned by a telecommunication company with the regional data from KOSIS(Korean Statistical Information Service). Especially, we focused on the assumption that the neighboring areas affect the distribution of the cancellation rates by coupling type, so we conducted spatial cluster analysis on the 3 types of cancellation rates of each region using the spatial analysis tool, SatScan, and analyzed the various relationships between the cancellation rates and the regional data. In the analysis phase, we first summarized the characteristics of the clusters derived by combining spatial information and the cancellation data. Next, based on the results of the cluster analysis, Variance analysis, Correlation analysis, and regression analysis were used to analyze the relationship between the cancellation rates data and regional data. Based on the results of analysis, we proposed appropriate marketing methods according to the region. Unlike previous studies on regional characteristics analysis, In this study has academic differentiation in that it performs clustering based on spatial information so that the regions with similar cancellation types on adjacent regions. In addition, there have been few studies considering the regional characteristics in the previous study on the determinants of subscription to high-speed Internet services, In this study, we tried to analyze the relationship between the clusters and the regional characteristics data, assuming that there are different factors depending on the region. In this study, we tried to get more efficient marketing method considering the characteristics of each region in the new subscription and customer management in high-speed internet. As a result of analysis of variance, it was confirmed that there were significant differences in regional characteristics among the clusters, Correlation analysis shows that there is a stronger correlation the clusters than all region. and Regression analysis was used to analyze the relationship between the cancellation rate and the regional characteristics. As a result, we found that there is a difference in the cancellation rate depending on the regional characteristics, and it is possible to target differentiated marketing each region. As the biggest limitation of this study and it was difficult to obtain enough data to carry out the analyze. In particular, it is difficult to find the variables that represent the regional characteristics in the Dong unit. In other words, most of the data was disclosed to the city rather than the Dong unit, so it was limited to analyze it in detail. The data such as income, card usage information and telecommunications company policies or characteristics that could affect its cause are not available at that time. The most urgent part for a more sophisticated analysis is to obtain the Dong unit data for the regional characteristics. Direction of the next studies be target marketing based on the results. It is also meaningful to analyze the effect of marketing by comparing and analyzing the difference of results before and after target marketing. It is also effective to use clusters based on new subscription data as well as cancellation data.

A Study on the Clustering Method of Row and Multiplex Housing in Seoul Using K-Means Clustering Algorithm and Hedonic Model (K-Means Clustering 알고리즘과 헤도닉 모형을 활용한 서울시 연립·다세대 군집분류 방법에 관한 연구)

  • Kwon, Soonjae;Kim, Seonghyeon;Tak, Onsik;Jeong, Hyeonhee
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.95-118
    • /
    • 2017
  • Recent centrally the downtown area, the transaction between the row housing and multiplex housing is activated and platform services such as Zigbang and Dabang are growing. The row housing and multiplex housing is a blind spot for real estate information. Because there is a social problem, due to the change in market size and information asymmetry due to changes in demand. Also, the 5 or 25 districts used by the Seoul Metropolitan Government or the Korean Appraisal Board(hereafter, KAB) were established within the administrative boundaries and used in existing real estate studies. This is not a district classification for real estate researches because it is zoned urban planning. Based on the existing study, this study found that the city needs to reset the Seoul Metropolitan Government's spatial structure in estimating future housing prices. So, This study attempted to classify the area without spatial heterogeneity by the reflected the property price characteristics of row housing and Multiplex housing. In other words, There has been a problem that an inefficient side has arisen due to the simple division by the existing administrative district. Therefore, this study aims to cluster Seoul as a new area for more efficient real estate analysis. This study was applied to the hedonic model based on the real transactions price data of row housing and multiplex housing. And the K-Means Clustering algorithm was used to cluster the spatial structure of Seoul. In this study, data onto real transactions price of the Seoul Row housing and Multiplex Housing from January 2014 to December 2016, and the official land value of 2016 was used and it provided by Ministry of Land, Infrastructure and Transport(hereafter, MOLIT). Data preprocessing was followed by the following processing procedures: Removal of underground transaction, Price standardization per area, Removal of Real transaction case(above 5 and below -5). In this study, we analyzed data from 132,707 cases to 126,759 data through data preprocessing. The data analysis tool used the R program. After data preprocessing, data model was constructed. Priority, the K-means Clustering was performed. In addition, a regression analysis was conducted using Hedonic model and it was conducted a cosine similarity analysis. Based on the constructed data model, we clustered on the basis of the longitude and latitude of Seoul and conducted comparative analysis of existing area. The results of this study indicated that the goodness of fit of the model was above 75 % and the variables used for the Hedonic model were significant. In other words, 5 or 25 districts that is the area of the existing administrative area are divided into 16 districts. So, this study derived a clustering method of row housing and multiplex housing in Seoul using K-Means Clustering algorithm and hedonic model by the reflected the property price characteristics. Moreover, they presented academic and practical implications and presented the limitations of this study and the direction of future research. Academic implication has clustered by reflecting the property price characteristics in order to improve the problems of the areas used in the Seoul Metropolitan Government, KAB, and Existing Real Estate Research. Another academic implications are that apartments were the main study of existing real estate research, and has proposed a method of classifying area in Seoul using public information(i.e., real-data of MOLIT) of government 3.0. Practical implication is that it can be used as a basic data for real estate related research on row housing and multiplex housing. Another practical implications are that is expected the activation of row housing and multiplex housing research and, that is expected to increase the accuracy of the model of the actual transaction. The future research direction of this study involves conducting various analyses to overcome the limitations of the threshold and indicates the need for deeper research.

Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC (국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.91-108
    • /
    • 2020
  • Korea's famous soccer players are steadily performing well in international leagues, which led to higher interests of Korean fans in the international leagues. Reflecting the growing social phenomenon of rising interests on international leagues by Korean fans, the study examined the overall consumer perception in the consumption of uniform by domestic soccer fans and compared the changes in perception following the transfers of the players. Among others, the paper examined the consumer perception and purchase factors of soccer fans shown in social media, focusing on periods before and after the recruitment of Heung-Min Son to English Premier League's Tottenham Football Club. To this end, the EPL uniform is the collection keyword the paper utilized and collected consumer postings from domestic website and social media via Python 3.7, and analyzed them using Ucinet 6, NodeXL 1.0.1, and SPSS 25.0 programs. The results of this study can be summarized as follows. First, the uniform of the club that consistently topped the league, has been gaining attention as a popular uniform, and the players' performance, and the players' position have been identified as key factors in the purchase and search of professional football uniforms. In the case of the club, the actual ranking and whether the league won are shown to be important factors in the purchase and search of professional soccer uniforms. The club's emblem and the sponsor logo that will be attached to the uniform are also factors of interest to consumers. In addition, in the decision making process of purchase of a uniform by professional soccer fan, uniform's form, marking, authenticity, and sponsors are found to be more important than price, design, size, and logo. The official online store has emerged as a major purchasing channel, followed by gifts for friends or requests from acquaintances when someone travels to the United Kingdom. Second, a classification of key control categories through the convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm shows differences in the classification of individual groups, but groups that include the EPL's club and player keywords are identified as the key topics in relation to professional football uniforms. Third, between 2002 and 2006, the central theme for professional football uniforms was World Cup and English Premier League, but from 2012 to 2015, the focus has shifted to more interest of domestic and international players in the English Premier League. The subject has changed to the uniform itself from this time on. In this context, the paper can confirm that the major issues regarding the uniforms of professional soccer players have changed since Ji-Sung Park's transfer to Manchester United, and Sung-Yong Ki, Chung-Yong Lee, and Heung-Min Son's good performances in these leagues. The paper also identified that the uniforms of the clubs to which the players have transferred to are of interest. Fourth, both male and female consumers are showing increasing interest in Son's league, the English Premier League, which Tottenham FC belongs to. In particular, the increasing interest in Son has shown a tendency to increase interest in football uniforms for female consumers. This study presents a variety of researches on sports consumption and has value as a consumer study by identifying unique consumption patterns. It is meaningful in that the accuracy of the interpretation has been enhanced by using a cluster analysis via convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm to identify the main topics. Based on the results of this study, the clubs will be able to maximize its profits and maintain good relationships with fans by identifying key drivers of consumer awareness and purchasing for professional soccer fans and establishing an effective marketing strategy.

Research Trend Analysis Using Bibliographic Information and Citations of Cloud Computing Articles: Application of Social Network Analysis (클라우드 컴퓨팅 관련 논문의 서지정보 및 인용정보를 활용한 연구 동향 분석: 사회 네트워크 분석의 활용)

  • Kim, Dongsung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.195-211
    • /
    • 2014
  • Cloud computing services provide IT resources as services on demand. This is considered a key concept, which will lead a shift from an ownership-based paradigm to a new pay-for-use paradigm, which can reduce the fixed cost for IT resources, and improve flexibility and scalability. As IT services, cloud services have evolved from early similar computing concepts such as network computing, utility computing, server-based computing, and grid computing. So research into cloud computing is highly related to and combined with various relevant computing research areas. To seek promising research issues and topics in cloud computing, it is necessary to understand the research trends in cloud computing more comprehensively. In this study, we collect bibliographic information and citation information for cloud computing related research papers published in major international journals from 1994 to 2012, and analyzes macroscopic trends and network changes to citation relationships among papers and the co-occurrence relationships of key words by utilizing social network analysis measures. Through the analysis, we can identify the relationships and connections among research topics in cloud computing related areas, and highlight new potential research topics. In addition, we visualize dynamic changes of research topics relating to cloud computing using a proposed cloud computing "research trend map." A research trend map visualizes positions of research topics in two-dimensional space. Frequencies of key words (X-axis) and the rates of increase in the degree centrality of key words (Y-axis) are used as the two dimensions of the research trend map. Based on the values of the two dimensions, the two dimensional space of a research map is divided into four areas: maturation, growth, promising, and decline. An area with high keyword frequency, but low rates of increase of degree centrality is defined as a mature technology area; the area where both keyword frequency and the increase rate of degree centrality are high is defined as a growth technology area; the area where the keyword frequency is low, but the rate of increase in the degree centrality is high is defined as a promising technology area; and the area where both keyword frequency and the rate of degree centrality are low is defined as a declining technology area. Based on this method, cloud computing research trend maps make it possible to easily grasp the main research trends in cloud computing, and to explain the evolution of research topics. According to the results of an analysis of citation relationships, research papers on security, distributed processing, and optical networking for cloud computing are on the top based on the page-rank measure. From the analysis of key words in research papers, cloud computing and grid computing showed high centrality in 2009, and key words dealing with main elemental technologies such as data outsourcing, error detection methods, and infrastructure construction showed high centrality in 2010~2011. In 2012, security, virtualization, and resource management showed high centrality. Moreover, it was found that the interest in the technical issues of cloud computing increases gradually. From annual cloud computing research trend maps, it was verified that security is located in the promising area, virtualization has moved from the promising area to the growth area, and grid computing and distributed system has moved to the declining area. The study results indicate that distributed systems and grid computing received a lot of attention as similar computing paradigms in the early stage of cloud computing research. The early stage of cloud computing was a period focused on understanding and investigating cloud computing as an emergent technology, linking to relevant established computing concepts. After the early stage, security and virtualization technologies became main issues in cloud computing, which is reflected in the movement of security and virtualization technologies from the promising area to the growth area in the cloud computing research trend maps. Moreover, this study revealed that current research in cloud computing has rapidly transferred from a focus on technical issues to for a focus on application issues, such as SLAs (Service Level Agreements).

Chinese relationship between animation and best pole - Focused on the aesthetic principles of the Cultural Revolution period (중국 애니메이션과 모범극의 상관관계 연구 - 문화대혁명 시기의 미학 원칙을 중심으로)

  • Kong, De Wei
    • Cartoon and Animation Studies
    • /
    • s.39
    • /
    • pp.215-231
    • /
    • 2015
  • The Cultural Revolution in the history of Chinese animation hinder the development of the initial animation, and after a negative assessment instrument provided the cause is to become sluggish growth of the Chinese animation. So this time animation are things that are the subject of academic research studies or analysis has been depreciating almost uniformly without evaluation. However, of all the cultural and artistic creation it is developing in its own specific historical conditions and has the aesthetic results. This paper puts the primary purpose is to hold in consideration the aesthetic principles that led to cultural and artistic creativity and objective perspective the achievements the Chinese animation of the time period of the Cultural Revolution. Cultural Revolution is avoided to the previous period in accordance with the socialist ideology of Mao Ze-dong(毛澤東) sikindaneun highlight the culture of the proletariat and placed our goal to create a new class culture. Therefore, cultural and artistic creation of this period is often inconsistent with this part of our aesthetic principles generally accepted character has a non- elitist and anti properties. Best drama is a creative one hand as a model to implement the principles of aesthetics, art and culture Cultural Revolution period kkophimyeo reference for understanding the aesthetic principles that animated the Chinese Cultural Revolution period of orientation. This paper has San Tu Chu(三突出), Hong Guang Liang(紅光亮), and Gao Da Quan(高大全) at the time of the Cultural Revolution aesthetic principles are reflected in how the concrete work, the Cultural Revolution when the animation is how to accommodate these aesthetic principles and placed emphasis on comparative studies on best pole and correlation of the Cultural Revolution when the Chinese animation to ensure that adaptation in own way. First, after analyzing whether the aesthetic principles of focusing on the similarities of the best pole time of the Cultural Revolution and China, and how to implement animation in the works, these aesthetic principles according to the analysis of positive and negative influence on the creation of Chinese animation It was described as neutral. The detailed analysis and comparative study courses were trying to access in two significant aspects of the characters and scenes directing. In terms of character animation of the Cultural Revolution in China when a young boy or girl, emphasis should emphasize the health tinged with red lips and cheek blush to highlight the desired Gong Nong Bing(工農兵) shape as the main character and smooth texture and sophisticated highlights the glittering feeling to the touch, it was confirmed focused hayeoteum to implement the principle of 'Hong Guang Liang', highlighting the brilliant colors with a clean, bright colors. Highlighting a number of protagoniste compared to the antagonist in the animated scene of the Cultural Revolution a few times in terms of production and, among a number of protagoniste also emphasizes the outstanding hero figure, "yet three outstanding heroes heroic figures also emphasize the leading figures among the the director of the extrusion step-by-step approach "('San Tu Chu')was used. In addition, the hero figure is generally high and low angle by directing a large and perfect aesthetic appearance was to faithfully implement the principle of 'high-charged'('Gao Da Quan').

Measuring the Public Service Quality Using Process Mining: Focusing on N City's Building Licensing Complaint Service (프로세스 마이닝을 이용한 공공서비스의 품질 측정: N시의 건축 인허가 민원 서비스를 중심으로)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.35-52
    • /
    • 2019
  • As public services are provided in various forms, including e-government, the level of public demand for public service quality is increasing. Although continuous measurement and improvement of the quality of public services is needed to improve the quality of public services, traditional surveys are costly and time-consuming and have limitations. Therefore, there is a need for an analytical technique that can measure the quality of public services quickly and accurately at any time based on the data generated from public services. In this study, we analyzed the quality of public services based on data using process mining techniques for civil licensing services in N city. It is because the N city's building license complaint service can secure data necessary for analysis and can be spread to other institutions through public service quality management. This study conducted process mining on a total of 3678 building license complaint services in N city for two years from January 2014, and identified process maps and departments with high frequency and long processing time. According to the analysis results, there was a case where a department was crowded or relatively few at a certain point in time. In addition, there was a reasonable doubt that the increase in the number of complaints would increase the time required to complete the complaints. According to the analysis results, the time required to complete the complaint was varied from the same day to a year and 146 days. The cumulative frequency of the top four departments of the Sewage Treatment Division, the Waterworks Division, the Urban Design Division, and the Green Growth Division exceeded 50% and the cumulative frequency of the top nine departments exceeded 70%. Higher departments were limited and there was a great deal of unbalanced load among departments. Most complaint services have a variety of different patterns of processes. Research shows that the number of 'complementary' decisions has the greatest impact on the length of a complaint. This is interpreted as a lengthy period until the completion of the entire complaint is required because the 'complement' decision requires a physical period in which the complainant supplements and submits the documents again. In order to solve these problems, it is possible to drastically reduce the overall processing time of the complaints by preparing thoroughly before the filing of the complaints or in the preparation of the complaints, or the 'complementary' decision of other complaints. By clarifying and disclosing the cause and solution of one of the important data in the system, it helps the complainant to prepare in advance and convinces that the documents prepared by the public information will be passed. The transparency of complaints can be sufficiently predictable. Documents prepared by pre-disclosed information are likely to be processed without problems, which not only shortens the processing period but also improves work efficiency by eliminating the need for renegotiation or multiple tasks from the point of view of the processor. The results of this study can be used to find departments with high burdens of civil complaints at certain points of time and to flexibly manage the workforce allocation between departments. In addition, as a result of analyzing the pattern of the departments participating in the consultation by the characteristics of the complaints, it is possible to use it for automation or recommendation when requesting the consultation department. In addition, by using various data generated during the complaint process and using machine learning techniques, the pattern of the complaint process can be found. It can be used for automation / intelligence of civil complaint processing by making this algorithm and applying it to the system. This study is expected to be used to suggest future public service quality improvement through process mining analysis on civil service.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

The Recent Outcomes after Repair of Tetralogy of Fallot Associated with Pulmonary Atresia and Major Aortopulmonary Collateral Arteries (폐동맥폐쇄와 주대동맥폐동맥부행혈관을 동반한 활로씨사징증 교정의 최근 결과)

  • Kim Jin-Hyun;Kim Woong-Han;Kim Dong-Jung;Jung Eui-Suk;Jeon Jae-Hyun;Min Sun-Kyung;Hong Jang-Mee;Lee Jeong-Ryul;Rho Joon-Ryuang;Kim Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.39 no.4 s.261
    • /
    • pp.269-274
    • /
    • 2006
  • Background: Tetralogy of Fallot (TOF) with pulmonary atresia and major aortopulmonary collateral arteries (MAPCAS) is complex lesion with marked heterogeneity of pulmonary blood supply and arborization anomalies. Patients with TOF with PA and MAPCAS have traditionally required multiple staged unifocalization of pulmonary blood supply before undergoing complete repair. In this report, we describe recent change of strategy and the results in our institution. Material and Method: We established surgical stratagies: early correction, central mediastinal approach, initial RV-PA conduit interposition, and aggressive intervention. Between July 1998 and August 2004, 23 patients were surgically treated at our institution. We divided them into 3 groups by initial operation method; group I: one stage total correction, group II: RV-PA conduit and unifocalization, group III: RV-PA conduit interposition only. Result: Mean ages at initial operation in each group were $13.9{\pm}16.0$ months (group 1), $10.4{\pm}15.6$ months (group II), and $7.9{\pm}7.7$ months (group III). True pulmonary arteries were not present in f patient and the pulmonary arteries were confluent in 22 patients. The balloon angioplasty was done in average 1.3 times (range: $1{\sim}6$). There were 4 early deaths relating initial operation, and 1 late death due to incracranial hemorrhage after definitive repair. The operative mortalities of initial procedures in each group were 25.0% (1/4: group I), 20.0% (2/10: group II), and 12.2% (1/9: group III). The causes of operative mortality were hypoxia (2), low cardiac output (1) and sudden cardiac arrest (1). Definitive repair rates in each group were 75% (3/4) in group I, 20% (2/10, fenestration: 2) in group II, and 55.0% (5/9, fenestration: 1) in group III. Conclusion: In patients of TOF with PA and MAPCAS, RV-PA connection as a initial procedure could be performed with relatively low risk, and high rate of definitive repair can be obtained in the help of balloon pulmonary angioplasty. One stage RV-PA connection and unifocalization appeared to be successful in selected patients.