• Title/Summary/Keyword: 성능 지수: 효율

Search Result 252, Processing Time 0.022 seconds

Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction (상추잎 너비와 길이 예측을 위한 합성곱 신경망 모델 비교)

  • Ji Su Song;Dong Suk Kim;Hyo Sung Kim;Eun Ji Jung;Hyun Jung Hwang;Jaesung Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.434-441
    • /
    • 2023
  • Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.

Development of remote control automatic fire extinguishing system for fire suppression in double-deck tunnel (복층터널 화재대응을 위한 원격 자동소화 시스템 개발 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong;Park, Sangheon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.167-175
    • /
    • 2019
  • To effectively deal with the fire in tunnel which is mostly the vehicle fire, it's more important to suppress the fire at early stage. In urban tunnel, however, accessibility to the scene of fire by the fire fighter is very limited due to severe traffic congestion which causes the difficulty with firefighting activity in timely manner and such a problem would be further worsened in underground road (double-deck tunnel) which has been increasingly extended and deepened. In preparation for the disaster in Korea, the range of life safety facilities for installation is defined based on category of the extension and fire protection referring to risk hazard index which is determined depending on tunnel length and conditions, and particularly to directly deal with the tunnel fire, fire extinguisher, indoor hydrant and sprinkler are designated as the mandatory facilities depending on category. But such fire extinguishing installations are found inappropriate functionally and technically and thus the measure to improve the system needs to be taken. Particularly in a double-deck tunnel which accommodates the traffic in both directions within a single tunnel of which section is divided by intermediate slab, the facility or the system which functions more rapidly and effectively is more than important. This study, thus, is intended to supplement the problems with existing tunnel life safety system (fire extinguishing) and develop the remote-controlled automatic fire extinguishing system which is optimized for a double-deck tunnel. Consequently, the system considering low floor height and extended length as well as indoor hydrant for a wide range of use have been developed together with the performance verification and the process for commercialization before applying to the tunnel is underway now.