최근 해군 함정은 다양한 최첨단 장비와 ICT 기술이 탑재되어 다종의 임무를 수행할 수 있도록 개발되고 있다. 우리나라 해군 함정의 주요 임무 중 하나는 급증하고 있는 탄도탄의 위협으로부터 아군의 주요 유닛과 지역을 방어하는 대탄도탄전이다. 대탄도탄전의 경우 탐지에서 요격까지 이루어지는 과정이 복잡한 반면 실패에 대한 피해가 크기 때문에, 대탄도탄전을 효과적으로 수행하기 위한 많은 준비가 필요하다. 본 논문에서는 미래 해군 함정에 탑재될 전투체계 및 장비를 활용한 대탄도 탄전 시뮬레이션 모델을 제안한다. 특히, 대탄도탄전에 필요한 특성을 반영하여 향후 효과도 분석에 활용될 수 있는 시뮬레이션 모델을 제안하고자 한다. 이를 위하여, 시뮬레이션 모델 개발에 DEVS 형식론을 적용하여 모듈러하고 계층적인 모델을 개발하였으며, 다양한 대탄도탄전 상황을 효율적으로 표현할 수 있게 하였다. 제시된 사례 연구 결과에서는 함정의 탐지 체계의 성능 및 의사 결정으로 발생할 수 있는 대탄도탄전의 문제 상황을 시뮬레이션 내용과 그 의미를 설명하였다. 향후 본 연구의 결과가 함정의 대탄도탄전 효과도 분석은 물론 함정의 대탄도탄전의 효과적인 수행을 위한 최적의 전투자원 배치 및 제원 그리고 운용 전술 등을 개발하는데 활용되기를 기대한다.
앱(App)이라 불리는 응용프로그램은 모바일 기기 등에 다운받아 사용 가능하다. 그 중 안드로이드(Android) 기반 앱은 오픈소스 기반으로 구현되어 누구나 악용 가능하다는 단점이 있지만, 아주 일부분의 소스코드를 공개하는 iOS와는 달리 안드로이드는 오픈소스로 구현되어있기 때문에 코드를 분석할 수 있다는 장점도 있다. 하지만, 오픈소스 기반의 안드로이드 앱은 누구나 소스코드 변경에 참여 가능하기 때문에 그만큼 악성코드가 많아지고 종류 또한 다양해질 수밖에 없다. 단기간에 기하급수적으로 늘어나는 악성코드는 사람이 일일이 탐지하기 어려워 AI를 활용하여 악성코드를 탐지하는 기법을 사용하는 것이 효율적이다. 기존 대부분의 악성 앱 탐지 방안은 Feature를 추출하여 악성 앱을 탐지하는 방안이 대부분이다. 따라서 Feature 추출 후 학습에 사용할 최적의 Feature를 선정(Selection)하는 3가지 방안을 제안한다. 마지막으로, 최적의 Feature로 모델링을 하는 단계에서 단일 모델 이외에도 앙상블 기법을 사용한다. 앙상블 기법은 이미 여러 연구에서 나와 있듯이 단일 모델의 성능을 뛰어넘는 결과를 보여주고 있다. 따라서 본 논문에서는 안드로이드 앱(App) 기반 악성코드 탐지 최적의 Feature 선정과 학습모델을 구현하는 방안을 제시한다.
다양한 전자전 상황에서 단위 위협체에 대하여 전자전 모델링과 시뮬레이션을 수행할 수 있는 통합 전자전 시뮬레이터의 개발 필요성이 대두되고 있다. 본 논문에서는 전자전 상황에서 전자정보 수집신호의 변수를 기반으로 전자파 신호를 발산하는 레이더 위협을 역추정하기 위한 시뮬레이션 시스템의 구성요소를 분석하고, 역추정 모델을 점진적으로 유지할 수 있는 방법을 제안한다. 또한, 실험을 통하여 점진적 역추정 모델 갱신 기법의 유효성 및 개별 역추정 결과의 통합 기법을 평가한다. 개별 역추정 모델의 생성을 위하여 의사결정트리, 베이지안 분류기, 인공신경망 및 유클리디안 거리 측정방식과 코사인 유사도 측정방식을 활용하는 군집화 알고리즘을 이용하였다. 첫 번째 실험에서 레이더 위협체에 대한 역추정 모델을 구축하기 위한 위협 예제의 크기를 점진적으로 증가시키면 역추정 모델의 정확도는 향상되었으며, 이러한 과정이 반복되면 역추정 모델에 대한 정확도는 일정한 값으로 수렴하였다. 두 번째 실험에서는 개별 역추정 모델의 결과를 통합하기 위하여 투표, 가중투표 및 뎀스터-쉐이퍼 알고리즘을 이용하였으며, 역추정 모델의 통합 결과는 뎀스터-쉐이퍼 알고리즘에 의한 역추정 정확도가 가장 좋은 성능을 보였다.
천연가스복합발전 공정은 일반 석탄 화력발전 공정에 비해 이산화탄소 배출량이 낮아 최근에 발전 플랜트로서 많은 관심을 받고 있다. 그럼에도 불구하고 이산화탄소 배출을 완전히 억제하기는 어려우므로 이산화탄소 포집공정이 필요하며 본 연구에서는 천연가스복합발전 플랜트에서 발생하는 배기가스 내 낮은 이산화탄소 농도를 고려해 포집공정을 구성하고 운전조건을 최적화하는 연구를 수행하였다. 최적화 연구를 위해 상용 시뮬레이션 프로그램으로 천연가스복합발전 공정과 습식 이산화탄소 포집공정이 결합된 전체 공정을 모델링 하였으며, 이를 이용해 다양한 조건에서 이산화탄소 흡수율, 흡수제 재생율, 천연가스복합발전 공정 내 전력 손실율을 종합적으로 고려한 최적 운전조건을 도출하였다. 특히 본 연구에서는 기존에 이산화탄소 포집공정에서 포집된 이산화탄소 톤당 에너지 소모량만을 주요 지표로 검토하던 것과 달리, 천연가스복합발전 공정 내 스팀 사용으로 인한 발전효율 저감, 운전조건 변화에 따른 이산화탄소 흡수율 및 흡수제 재생율 변화의 측면도 함께 고려하여 공정 전반의 성능을 종합적으로 고려할 수 있도록 하였다. 결론적으로 재생탑 재비기 온도가 120 ℃가 되었을 때 가장 좋은 결과를 보이는 것으로 나타났으며, 그 원인을 분석하였다.
국지성 호우 및 설계빈도 이상 강우의 증가로 침수피해가 매년 증가하고 있으며 이에 따라 홍수 조절 및 방어를 위한 수공구조물의 중요성이 증가하고 있다. 수공구조물은 목적과 성능에 따른 설계가 이루어지고 있고 홍수량이 중요한 산정 요소이나 국내에서는 관측자료의 신뢰성 부족 및 데이터의 부족으로 인하여 수공구조물 설계를 위한 수문해석 입력자료로 사용되는 설계강우량은 정확한 확률강우량의 산정과 시간분포가 중요한 요소로 작용한다. 실무에서는 Huff의 4분위 방법의 누가우량백분율을 이용하여 설계강우량의 시간분포 회귀식을 산정하고 있으며 분위별 곡선에 대한 회귀식은 전반적으로 정확도가 높게 나타나는 6차 다항회귀식을 일률적으로 사용하고 있다. 본 연구에서는 실무에서 일반적으로 설계강우량의 시간분포를 위해 사용하고 있는 Huff의 4분위 방법의 누가우량백분율을 이용하여 통계 모델링에서 간결함의 원리에 따라 변수선택법을 이용하여 시간분포 회귀식을 유도하였으며, 유의성 검정을 통한 시간분포 회귀식의 검증을 실시하였다. 변수선택법과 유의성 검정을 통한 시간분포 회귀식 산정 결과 전진선택법과 후방제거법의 장점을 모두 가지고 있는 단계선택법을 이용하여 시간분포 회귀식을 유도하는 것이 가장 적합한 것으로 분석되었다.
대안 모델링에 대한 관심이 커진 이후 데이터 기반의 기계학습을 이용하여 비선형 화학 공정을 모사하고자 하는 연구가 지속되고 있다. 그러나 기계 학습 모델의 black box 성질로 인하여 모델의 해석 가능성에 한계는 산업 적용에 걸림돌이 되고 있다. 따라서, 모델의 정확도가 보장된 상태에서 해석력을 부여하는 개념인 설명 가능한 인공지능(explainable artificial intelligence, XAI)을 이용하여 화학 공정 분석을 시도하고자 한다. 기존의 화학 공정 민감도 분석이 변수의 민감도 지수를 계산하고 순위를 매기는 데에 그쳤다면, XAI를 이용하여 전역적, 국소적 민감도 분석뿐만 아니라 변수들 간의 상호작용에 대하여 분석하여 데이터로부터 물리적 통찰을 얻어내는 방법론을 제안한다. 사례 연구의 대상공정인 암모니아 합성 공정에 대하여 첫번째 반응기로 향하는 흐름에 대한 예열기(preheater)의 온도, 세 반응기로 향하는 cold-shot의 분배 비율을 공정 변수로 설정하였다. Matlab과 Aspen plus를 연동하여 공정 변수를 바꿔가면서 암모니아의 생산량과 세 반응기의 최고 온도에 대한 데이터를 얻었으며, tree 기반의 모델들을 훈련시켰다. 그리고 성능이 좋은 모델에 대하여 XAI 기법 중 하나인 SHAP 기법을 이용하여 민감도 분석을 수행하였다. 전역적 민감도 분석 결과, 예열기의 온도가 가장 큰 영향을 미쳤으며 국소적 민감도 분석 결과에서 생산성 향상 및 과열 방지를 위한 공정 변수들의 범위를 규정할 수 있었다. 이처럼 화학 공정의 대안 모델을 구축하고 설명 가능한 인공지능을 이용해 민감도 분석을 진행하는 방법론을 통해 공정 최적화에 대한 정량적, 정성적 피드백을 제안하는 데 도움을 줄 것이다.
본 논문은 직류전동기(DC motor)와 전기적인 특성은 유사하지만, 수명과 신뢰성이 향상된 BLDC 모터의 제어기법에 대해 언급하고 있다. BLDC모터는 회전자의 위치 정보를 사용하여 직류전동기의 기계적인 접촉에 의한 정류 장치를 제거함으로써 내구성과 속도 안정성을 향상시킬 수 있다. 본 연구에서는 BLDC모터의 권선에 흐르는 전류가 직류전동기의 전기자에 흐르는 구형파 형태의 전류인 것에 착안하여 직류전동기에 대한 제어기를 설계하고, 설계된 제어기를 3상 BLDC모터에 적용하여 제어기의 유효성을 확인하였다. 이를 위해 3상 BLDC모터의 전기적인 파라미터 값을 가지는 단상 직류전동기의 모델링을 실시하였고, 도출된 시스템에 대해 근궤적법을 적용하여 전동기의 속도제어를 위한 PI 제어기를 설계하였다. DC 전동기의 속도제어 시뮬레이션을 시행하여 제어기의 성능을 확인하였고, 동일한 제어기를 MATLAB으로 구현한 3상 BLDC모터의 속도제어에 적용하였다. DC 전동기와 유사한 제어 결과를 3상 BLDC모터에서 얻을 수 있었고, 이를 통해 연구에서 제안한 제어기법의 유용성을 확인할 수 있었다.
최근에는 다양한 플랫폼 서비스가 인공지능을 활용하여 제공되고 있으며, 그 중 하나로 ChatGPT는 대량의 데이터를 자연어 처리하여 자가 학습 후 답변을 생성하는 역할을 수행하고 있다. ChatGPT는 IT 분야에서 소프트웨어 프로그래밍 분야를 포함하여 다양한 작업을 수행할 수 있는데, 특히 프로그램을 대표하는 C언어를 통해 간단한 프로그램을 생성하고 에러를 수정하는데 도움을 줄 수 있다. 이러한 능력을 토대로 C언어를 기반으로 만들어진 하드웨어 언어인 베릴로그 HDL도 ChatGPT에서 원활한 생성이 예상되지만, 베릴로그 HDL의 합성은 명령문들을 논리회로 구조 형태로 생성하는 것이기에 결과물들의 정상적인 실행 여부를 확인해야 한다. 본 논문에서는 용이한 실험을 위해 규모가 적은 논리회로들을 선택하여 ChatGPT에서 생성된 디지털회로와 인간이 만든 회로들의 결과를 확인하려 한다. 실험 환경은 Xilinx ISE 14.7로 모듈들을 모델링하였으며 xc3s1000 FPGA칩을 사용하여 구현하였다. 구현된 결과물을 FPGA의 사용 면적과 처리 시간을 각각 비교 분석함으로써 ChatGPT의 생성물과 베릴로그 HDL의 생성물의 성능을 비교하였다.
본 연구에서는 하이드로사이클론, 응결/응집, 용존공기부상 단일 공정이 결합한 실 규모 물순환 조합공정(HCFD)의 오염 지표수 처리 성능을 평가하였다. 실 규모 물순환 공정은 수질 변동이 큰 유입 원수를 대상으로 안정적인 수처리 효율을 보였으며, 유입수의 주요 수질 지표가 매우 나쁨(BOD, TP, COD) 혹은 약간 나쁨(SS)이었으나, 방류수는 매우 좋음(BOD, SS, TP) 혹은 좋음(COD) 수준으로 향상되었다. 물순환 시스템 방류수의 후속 고도 처리를 위해 활성탄 기반 흡착 공정의 용존성 유기물 및 미량오염물질(잔류의약물질 APAP 및 산업 화학물질 AO7) 처리 잠재성을 평가하였다. 오염원 흡착 특성은 흡착동역학 및 등온 흡착실험과 관련된 모델링 기법을 이용하여 관찰하였다. 실험 결과, 후처리 활성탄 흡착은 잔류 유기물, APAP, AO7 유기물에 대한 높은 오염원 제거 잠재성이 있음이 확인되었으며, 오염원 흡착속도 및 최대 흡착량 값은 유사 2차 반응속도 모델과 Langmuir 등온흡착 모델에 의해 결정되었다. 본 연구 결과, 활성탄 기반 흡착 공정은 기존의 물순환 조합공정과 연계시 수처리 효율을 상호 보완적으로 높이고, 흡착 공정은 전단의 입자 분리 공정으로 제거가 어려운 용존성 오염원의 후속 처리에 대한 높은 잠재성이 있음을 시사한다.
본 논문에서는 단일 채널 다성 음악에서 리듬 악기 신호를 블라인드 (blind) 방식으로 추출하는 방법을 제안한다. 상업적으로 판매되는 음악 신호는 대부분 2개 이하만의 혼합된 채널 형태로 사용자에게 제공되는 반면, 그 혼합 채널 신호에는 각각 가창 음원 (vocal)을 비롯한 많은 종류의 악기가 포함되어 있는 형태이다. 따라서, 혼합 신호의 개수가 음원 개수와 같거나 더 많은 상황을 가정하는 기존의 음원 분리 방법처럼, 혼합 환경이나 신호의 통계적 특성을 모델링하는 것 보다는, 특정 음원의 고유 특성을 활용하는 것이 이처럼 적은 개수의 혼합 신호만을 가지고 있는 환경 (underdetermined)에 더욱 적합하다. 본 논문에서는 다른 화성 악기와 혼합되어 있는 상창에서 리듬 악기 음원만을 추출하는 것을 목표로 한다. 비음수 행렬 인수분해 (NMF: Nonnegative Matrix Factorization)의 변형된 알고리즘인 비음수 행렬의 부분적 공동 분해 (NMPCF: Nonnegative Matrix Partial Co-Factorization)가 입력 행렬의 시간적인 속성과 주파수적인 속성에서 다양한 관계성을 분석하기 위해 활용된다. 또한 특정 시간 단위로 입력 신호를 파편화 (segmentation)하고, 파편들에서 반복적으로 발생하는 성분을 리듬 악기가 공통적으로 포함하고 있는 특성이라고 가정한다. 본 논문에서 제안하는 방법은 일반적으로 받아들여질 수 있을 정도의 성능을 보여주지만, 기본적으로는 사전 정보를 활용하는 타악기 음원 분리 방식보다 우수하지는 않다. 그러나 블라인드 방식의 특성상, 사전 정보를 획득한기에 용이하지 않은 경우, 또는 사전 정보와 현격히 다른 리듬 악기가 연주되는 경우 등에 보다 유연하게 대응할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.