• Title/Summary/Keyword: 성능제어

Search Result 9,046, Processing Time 0.041 seconds

A Optimization Study of UAV Path Planning Generation based-on Rapid-exploring Random Tree Method (급속탐색랜덤트리기법 기반의 무인 비행체 경로계획생성 최적화 연구)

  • Jae-Hwan Bong;Seong-Kyun Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.981-988
    • /
    • 2023
  • As the usage of unmanned aerial vehicles expands, the development and the demand of related technologies are increasing. As the frequency of operation increases and the convenience of operation is emphasized, the importance of related autonomous flight technology is also highlighted. Establishing a path plan to reach the destination in autonomous flight of an unmanned aerial vehicle is important in guidance and control, and a technology for automatically generating path plan is required in order to maximize the effect of unmanned aerial vehicle. In this study, the optimization research of path planning using rapid-exploring random tree method was performed for increasing the effectiveness of autonomous operation. The path planning optimization method considering the characteristics of the unmanned aerial vehicle is proposed. In order to achieve indexes such as optimal distance, shortest time, and passage of mission points, the path planning was optimized in consideration of the mission goals and dynamic characteristics of the unmanned aerial vehicle. The proposed methods confirmed their applicability to the generation of path planning for unmanned aerial vehicles through performance verification for obstacle situations.

A Comprehensive Examination of Autogenous Shrinkage in Ultra-High-Strength Concrete augmented with Graphene and Hollow Glass Powder (그래핀과 유공유리분말을 사용한 초고강도 콘크리트의 자기수축에 관한 실험적 연구)

  • Seo, Tae-Seok;Lee, Hyun-Seung;Kim, Kang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.547-558
    • /
    • 2023
  • This research delves into the fabrication of an ultra-high-strength concrete, enriched with oxidized graphene nanoplatelet(GO) and hollow glass powder(HGP), notably eschewing the conventional inclusion of silica fume(SF). The primary objective was to scrutinize the autogenous shrinkage characteristics of this innovative formulation. It was discerned that the NewMix specimen, which incorporated the cGO(sourced from Company C) and HGP, and intentionally bypassed SF, showcased a commendable 13% reduction in autogenous shrinkage relative to the benchmark(Ref) specimenthat incorporated SF. Moreover, the proclivity for crack formation owing to autogenous shrinkage in the NewMix was observed to manifested by NewMix at the juncture of cracking emerged as the apex value. Attributed to the expansive specific surface area and exemplary dispersibility of cGO, it was postulated that the concrete's pore structure benefitted from enhanced infill, leading to a reduction in autogenous shrinkage. Additionally, the cGO integration fortified the concrete's resistance to crack initiation. Consequently, such an enhancement is posied to be pivotal in mitigating crack propagation resulting from autogenous shrinkage in ultra-high-strength concrete.

Comparative Study on Adsorption Properties of Carbons Derived from Lignin and Polymer/Lignin Composite Precursors (리그닌 및 고분자/리그닌 복합소재 탄화 생성물의 흡착 특성 비교)

  • Young Soon Im;Ahyeon Jin;Sun Young Park;Mijung Kim;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.488-492
    • /
    • 2023
  • In this study, a carbon film derived from a polymer/lignin composite precursor was produced by a carbonization cycle with a controlled temperature profile. The feasibility of successful formation of the carbon film using the carbonization cycle was monitored. The adsorption behavior of the carbon film toward various molecules, such as nonpolar and polar organic molecules, and dyes was investigated using ultraviolet/visible (UV/Vis) spectroscopy compared with that of carbonized lignin. Cyclic voltammetry (CV) analysis proved that a robust carbon film was prepared by the carbonization cycle. It was also demonstrated that the carbonized lignin and carbon film showed adsorption capability toward all types of organic molecules, in particular organic dyes, owing to the carbonized lignin. This work provides important information for future relevant research.

Evaluation of the Basic Property Evaluation of Eco-powder, a Hydrothermal Synthesis Product for Improving Waste Vinyl Recycling Efficiency (농촌 폐비닐 활용률 제고를 위한 수열합성 생성물인 에코 파우더(Eco-powder)의 기초물성 평가)

  • Sun-Mi Choi;Min-Chul Lee;Jin-Man Kim;Young-Gon Son;Nam-Ho Kim
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.48-57
    • /
    • 2024
  • This study aimed to improve utilization of the Class C vinyl waste generated in rural areas based on a preliminary investigation on the use of eco-powder, generated through pyrolysis, as a raw material for plastic. The efficiency of pre-processing treatments in controlling ash content of the generated eco-powder and its effect on the basic properties of manufactured plastic were evaluated. The basic properties included ash content of the compressed eco-powder at different levels of ash content, impact strength, flexural strength, and tensile strength. The experimental results confirmed that pre-processing improved the separation efficiency of soil particles and vinyl waste through physical impact. The eco-powder with ash content of less than or equal to 26% was found to satisfy the target performance during impact strength, flexural strength, and tensile strength evaluation. Thus, it was confirmed that the Class C vinyl waste, having low utilization and recovery rates, could be effectively utilized as a plastic raw material after optimum thermal treatment and physical processing using the eco-powder.

Development of unmanned hovercraft system for environmental monitoring (환경 모니터링을 위한 무인 호버크래프트 시스템 개발)

  • Sung-goo Yoo;Jin-Taek Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.525-530
    • /
    • 2024
  • The need for an environmental monitoring system that obtains and provides environmental information in real time is increasing. In particular, in the case of water quality management in public waters, regular management must be conducted through manual and automatic measurement by law, and air pollution also requires regular measurement and management to reduce fine dust and exhaust gas in connection with the realization of carbon neutrality. In this study, we implemented a system that can measure and monitor water pollution and air pollution information in real time. A hovercraft capable of moving on land and water simultaneously was used as a measurement tool. Water quality measurement and air pollution measurement sensors were installed on the hovercraft body, and a communication module was installed to transmit the information to the monitoring system in real time. The structure of a hovercraft for environmental measurement was designed, and a LoRa module capable of low-power, long-distance communication was applied as a real-time information transmission communication module. The operational performance of the proposed system was confirmed through actual hardware implementation.

Delay time Analysis of Asynchronous RIT Mode MAC in Wi-SUN (Wi-SUN에서 비동기 RIT모드 MAC의 지연시간 분석)

  • Dongwon Kim;Mi-Hee Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • In recent years, research on smart factory wireless mobile communication technology that wirelessly remotely controls utilities is being actively conducted. The Wi-SUN (Wireless Smart Utility Network) Alliance proposed a Wi-SUN protocol structure suitable for building a platform such as a smart factory as a new wireless communication standardization standard based on EEE802.15.4g/e. It analyzes the performance of the IEEE802.15.4e Receiver Initiated Transmission(RIT) Mode Media Access Control (MAC) in terms of throughput and latency, and looks at considerations for efficient operation. RIT mode shows that as the check interval becomes longer, delay time and throughput decrease. It was shown that as the traffic load increases, if the RIT check interval is shortened, the delay time can be shortened and throughput can be increased. RIT mode has the advantage of low power consumption and has neutral characteristics between IEEE802.15.4 and CSL mode in terms of delay time and throughput.

An Experimental Study of Spalling Characteristics of High-Strength Reinforced Concrete Columns with PP Fibers (PP 섬유를 함유한 고강도 철근콘크리트 기둥의 폭열 특성에 관한 실험적 연구)

  • Sin, Sung-Woo;Yu, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.83-90
    • /
    • 2006
  • A spalling is defined as the damages of concrete exposed to high temperature during the fire by causing cracks and localized bursting of small pieces of concrete. It is reported that spalling is caused by the vapor pressure and polypropylene(PP) fiber has an important role in protecting from spalling. The characteristics of fire resistance of high-strength reinforced concrete columns with various concrete strength and various contents of PP fiber were investigated in this study. In results, the ratio of unstressed residual strength of columns increases as the concrete strength increases and the ratio of unstressed residual strength of columns exposed to fire decreases as the content of PP fiber increases from 0% to 0.2%.

An Auto Obstacle Collision Avoidance System using Reinforcement Learning and Motion VAE (강화학습과 Motion VAE 를 이용한 자동 장애물 충돌 회피 시스템 구현)

  • Zheng Si;Taehong Gu;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.4
    • /
    • pp.1-10
    • /
    • 2024
  • In the fields of computer animation and robotics, reaching a destination while avoiding obstacles has always been a difficult task. Moreover, generating appropriate motions while planning a route is even more challenging. Recently, academic circles are actively conducting research to generate character motions by modifying and utilizing VAE (Variational Auto-Encoder), a data-based generation model. Based on this, in this study, the latent space of the MVAE model is learned using a reinforcement learning method[1]. With the policy learned in this way, the character can arrive its destination while avoiding both static and dynamic obstacles with natural motions. The character can easily avoid obstacles moving in random directions, and it is experimentally shown that the performance is improved, and the learning time is greatly reduced compared to existing approach.

Development of Emotion Recognition Model Using Audio-video Feature Extraction Multimodal Model (음성-영상 특징 추출 멀티모달 모델을 이용한 감정 인식 모델 개발)

  • Jong-Gu Kim;Jang-Woo Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.221-228
    • /
    • 2023
  • Physical and mental changes caused by emotions can affect various behaviors, such as driving or learning behavior. Therefore, recognizing these emotions is a very important task because it can be used in various industries, such as recognizing and controlling dangerous emotions while driving. In this paper, we attempted to solve the emotion recognition task by implementing a multimodal model that recognizes emotions using both audio and video data from different domains. After extracting voice from video data using RAVDESS data, features of voice data are extracted through a model using 2D-CNN. In addition, the video data features are extracted using a slowfast feature extractor. And the information contained in the audio and video data, which have different domains, are combined into one feature that contains all the information. Afterwards, emotion recognition is performed using the combined features. Lastly, we evaluate the conventional methods that how to combine results from models and how to vote two model's results and a method of unifying the domain through feature extraction, then combining the features and performing classification using a classifier.

Study on Flow Control of Primitive Structures for Enhancing Particulate Matter Filter Performance (미세먼지 필터 성능향상을 위한 primitive 구조의 유동 제어 연구)

  • J. B. Lee;S. H. Hwang;J. Y. Kim;H. Kim;D. Ahn;S. Y. Jung
    • Transactions of Materials Processing
    • /
    • v.33 no.4
    • /
    • pp.270-276
    • /
    • 2024
  • In order to improve the performance of the PM (Particulate Matter) filter, the TPMS structure was used as a flow controller to control the flow entering the filter. Among various TPMS structures, a primitive structure that is easy to utilize 3D printing technique was selected and the effect of unit cell size was analyzed. In addition, numerical analysis was performed and swirl ratio was analyzed to confirm changes in filter inlet flow characteristics that affect changes in filter performance. Unit cell size is closely related to filter performance, and both PM collection efficiency and pressure drop increase as unit cell size decreases. Through quality factor (QF) comparison, which comprehensively evaluate collection efficiency and pressure drop, it was confirmed that when the unit cell size is 5 mm, PM collection efficiency increases, but the flow controller actually reduces filter performance. QF values are similar for unit cell sizes of 10 and 20 mm, and it is advantageous to select the unit cell size among these two considering collection efficiency and operating costs. The filter's collection performance increases due to the increase in swirl flow caused by the primitive structure, and the filter's collection efficiency increases due to the swirl flow that increases throughout the flow field as the unit cell size becomes smaller.