본 논문에서는 낮은 비트율 CELP 음성 부호화기의 장구간 예측기의 성능 향상 방 법을 제안한다. 비트율을 낮추기 위해서는 분석 구간의 길이가 길어져야하며 이에 따라 장 구간 예측기의 성능이 저하되어 장구간 예측 후에도 준 주기성 성분이 상당량 존재하므로 백색 잡음으로 구성된 통계 코드북만으로는 이를 모델링하기 어려워진다. 제안 방법에서는 다중 대역 필터와 다중 펄스열을 이용하여 한 번 더 필터링(이차 장구간 예측)함으로써 장 구간 예측 후의 신호가 통계 코드북에 적합한 백색 잡음 형태로 되도록 모델링한다. 제안된 방법의 성능을 평가하기 위해 4.8kbps 비트율로 양자화한 후, 기존에 제안된 같은 전송률의 MBCELP와 DoD-CELP와 비교하였다. 실험 결과 제안된 방법이 기존 부호화기들에 비해 주/객관적인 음질에서 우수한 성능을 보여준다.
Kim, Hui-Seung;Baek, Mi-Ran;Won, Do-Hyeon;Hong, Seong-Su;No, Jeong-Uk;Han, Sang-Gyu;Won, Jae-Seon;O, Dong-Seong
Proceedings of the KIPE Conference
/
2010.07a
/
pp.464-465
/
2010
EMI 감쇄성능의 정확한 예측을 위해서는 EMI 필터에 사용되는 소자에 대한 명확한 공통 및 차동 모드 임피던스 모델 정보가 필요하다. 하지만 기존의 전도성 EMI 감쇄성능 예측 방식은 이러한 모델의 부재로 인해 고주파수에서 예측 값과 실험 결과에 큰 오차가 발생하는 문제점이 있다. 이를 해결하기 위해 본 논문에서는 일반적으로 사용되는 EMI 필터의 소자를 전도성 전파 규제 범위에서 모델링하고 이를 이용하여 공통 및 차동모드 임피던스로 다시 모델링한다. 실험 결과 EMI 감쇄성능을 1MHz 이하의 영역에서만 예측할 수 있었던 기존 방식과 비교해 제안 방식은 10MHz 영역까지 예측할 수 있는 장점이 있다. 최종적으로 임피던스 분석기를 이용한 측정 결과와 모의실험 결과를 제시하여 제안 방식의 타당성 및 유용성을 검증한다.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.282-282
/
2016
지표수문해석모형이란 전 지구를 대상으로 수문해석 및 예측이 가능한 분포형 수문모형이다. 본 연구에서는 CSEOF(Cyclostationary Empirical Orthogonal Functions) 분석 방법을 이용하여 지표수문해석 모형 중 하나인 VIC(Variable Infiltration Capacity)모형의 토양수분 모의 성능을 평가해보고자 한다. 이를 위하여 먼저 남한에 대한 VIC 모형으로 모의한 토양수분 예측 결과와 관측자료를 수집하였다. 모의 성능 평가 기간은 1976년부터 2006년까지이다. 이후 본 연구에서는 수집된 VIC 모형의 예측 결과와 관측 자료에 대한 CSEOF 분석을 수행하여 각 자료의 월별 주된 변동 특성을 추출하였다. VIC 모형의 예측 결과와 관측자료의 상관관계는 CSEOF 분석 결과에 대한 Pattern Correlation으로 정량화되었다. 이와 더불어 본 연구에서는 모형의 모의 성능 평가에 주로 사용되는 NRMSE(Nomalized Root Mean Square Error)를 산정하여 예측 결과의 오차를 평가하였다. Pattern Correlation과 NRMSE를 모두 고려하여 VIC 모형의 성능을 평가해본 결과, 건기에 해당하는 기간과 우기에 해당하는 기간의 모의 성능이 다르게 나타났다. 본 연구의 결과는 추후에 지표수문해석 모형의 예측 결과를 이용하는 기후변화 관련 연구에 활용될 수 있을 것으로 판단된다.
It is important issue for software architects to estimate performance of software in the early phase of the development process due to the need to verify non-functional requirements and estimation of performance in various stages of architectural design. In order to analyze performance of software, there are many approaches to translate software architecture represented by Unified Modeling Language, into analytical models. However, in the development of agent-based systems, these approaches ignore or simplify the crucial details of the underlying performance of the agent platform. In this paper, we propose performance prediction methodology for agent based system using formal semantic descriptions, and then, we transform the descriptions into queuing network model which model reflects performance of hardware and software platform. We prove the accuracy of proposed methodology using prototype implementation. The accuracy is summarized at 80%.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.30
no.5
/
pp.62-70
/
2002
Methodology of predicting steady performance of gas turbine engine from transient test data was explored to develop an economic performance test technique. Discrepancy of transient performance from steady performance was categorized as dynamic, thermal and aerodynamic transient effects. Each effect was mathematically modeled and quantified to provide correction factors for calculating steady performance. Engine performance tests were conducted at Altitude Engine Test Facility of KARI. The influence of engine inlet/outlet condition change on engine performance was corrected firstly, and then steady performance was predicted from the correction factors. The result was compared with steady performance test data. This correction method showed an acceptable level of precision, 3.68% difference of fuel flow.
KIPS Transactions on Software and Data Engineering
/
v.9
no.5
/
pp.161-168
/
2020
Predicting outcome of the sports enables teams to establish their strategy by analyzing variables that affect overall game flow and wins and losses. Many studies have been conducted on the prediction of the outcome of sports events through statistical techniques and machine learning techniques. Predictive performance is the most important in a game prediction model. However, statistical and machine learning models show different optimal performance depending on the characteristics of the data used for learning. In this paper, we propose a new ensemble model to predict English Premier League soccer games using statistical models and the machine learning models which showed good performance in predicting the results of the soccer games and this model is possible to select a model that performs best when predicting the data even if the data are different. The proposed ensemble model predicts game results by learning the final prediction model with the game prediction results of each single model and the actual game results. Experimental results for the proposed model show higher performance than the single models.
Proceedings of the Korean Information Science Society Conference
/
2007.06d
/
pp.545-550
/
2007
최근 들어, 모바일 장치의 성능이 향상되고 보급률이 증대됨에 따라 모바일 장치를 그리드 자원으로 이용하기 위한 모바일 그리드가 등장하였다. 그러나 모바일 장치가 가지는 무선기기로써의 제약사항 즉, 무선 통신의 불안정성, 이동으로 인한 연결 끊김 등의 문제와 배터리의 제약은 모바일 그리드를 구성하는데에 많은 어려움을 야기한다. 따라서 본 논문에서는 이러한 제약사항을 극복할 수 있는 환경적인 요소를 고려하여 학교나 회사와 같이 안정적인 무선통신 환경을 제공하고 베터리 충전이 용의한 네트워크 그룹을 가정하였다. 그리고 제한된 성능을 발휘하는 모바일 장치에서 독립적인 소규모 작업의 효율적인 수행을 위해 성능예측 기반 작업 스케줄링 기법을 제시하였다. 이 기법은 네트워크 그룹 내의 모바일 장치의 이용 패턴이 규칙적으로 나타내는 특성을 이용한다. 제안하는 스케줄링 기법에서는 하나의 네트워크 그룹의 성능을 그 그룹에 속한 모바일 장치들의 성능의 합으로 정의하고 시간에 따라 변화하는 모바일 장치들의 성능을 예측하기 위해 기존에 수집된 성능 정보의 통계를 이용한다. 그리고 본 기법은 그리드와 네트워크 그룹, 네트워크 그룹과 모바일 장치 사이의 작업 분배시 예측된 성능 정보를 이용함으로써 네트워크 그룹의 사용률을 높여 전체 작업의 최종 응답시간을 줄일 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.67-70
/
2022
최근 딥러닝 방법의 발전하면서 영상처리 및 컴퓨터 비전의 다양한 분야에서 딥러닝 기반의 알고리즘들이 그 이전의 방법들에 비하여 큰 성능 향상을 보이고 있다. 손실 영상 압축의 경우 최근 encoder-decoder 형태의 네트웍이 영상 압축에서 사용되는 transform을 대체하고 있고, transform 결과들의 엔트로피 코딩을 위한 추가적인 encoder-decoder 네트웍을 사용하여 HEVC 수준에 버금가는 성능을 내고 있다. 무손실 압축의 경우에도 매 픽셀 예측을 CNN으로 수행하는 경우, 기존의 예측방법들에 비하여 예측성능이 크게 향상되어 JPEG-2000 Lossless, FLIF, JEPG-XL 등의 딥러닝을 사용하지 않는 방법들에 비하여 우수한 성능을 내는 것으로 보고되고 있다. 그러나 모든 픽셀에 대하여 예측값을 CNN을 통하여 계산하는 방법은, 영상의 픽셀 수 만큼 CNN을 수행해야 하므로 HD 크기 영상에 대하여 지금까지 알려진 가장 빠른 방법이 한 시간 이상 소요되는 등 비현실적인 것으로 알려져 있다. 따라서 최근에는 성능은 이보다 떨어지지만 속도를 현실적으로 줄인 방법들이 제안되고 있다. 이러한 방법들은 초기에는 FLIF나 JPEG-XL에 비하여 성능이 떨어져서, GPU를 사용하면서도 기존의 방법보다 좋지 않은 성능을 보인다는 면에서 여전히 비현실적이었다. 최근에는 신호의 특성을 더 잘 활용하는 방법들이 제안되면서 매 픽셀마다 CNN을 수행하는 방법보다는 성능이 떨어지지만, 짧은 시간 내에 FLIF나 JPEG-XL보다는 좋은 성능을 내는 현실적인 방법들이 제안되었다. 본 연구에서는 이러한 최근의 몇 가지 방법들을 살펴보고 이들보다 성능을 더 좋게 할 수 있는 보조적인 방법들과 raw image에 대한 성능을 평가한다.
슈퍼스칼라 프로세서의 성능을 향상시키기 위해서는 데이터 종속성에 의한 장애를 제거해야 한다. 최근 여러 논문들은 이러한 데이터 종속성을 제거하기 위해서 명령어의 결과 값을 예상하는 메커니즘을 제안하였다. 이러한 예상 메커니즘 중 여러 예측기를 혼합해서 사용하는 하이브리드 방법은 각 하나의 예측기만을 사용하는 방법보다 더 좋은 성능을 얻을 수 있다. 그러나 그러한 하이브리드 예측기는 명령어를 중복해서 저장하여 많은 하드웨으 크기를 요구한다. 본 논문에서는 여러 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 또한 예상이 자주 틀리는 명령어를 동적으로 찾아내어 예상하지 않음으로서 잘못 예상시 발생하는 misprediction 페널티를 낮추고 예상 정확도를 높인다. 시뮬레이션 결과 SPECint95 벤치마크프로그램에 대해 제안한 하이브리드 예측기에서 예측율은 평균 79%에서 90%로 향상하였고, misprediction rate는 평균 12%에서 2%로 낮추었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.555-556
/
2015
MPEG 의 Royalty-Free 비디오 코덱의 하나로 표준화 중인 IVC(Internet Video Coding)에서는 화면내(intra) 예측부호화에서 부호화 이득을 위하여 $4{\times}4$ 블록 예측 및 $4{\times}4$ 블록 변환을 포함하고 있다. 반면, 화면간(inter) 예측부호화에서는 $16{\times}16$ 블록에서 최소 $8{\times}8$ 블록까지의 가변크기 블록에 대한 예측만 가능하다. 보다 복잡한 영상의 경우 보다 작은 블록에 대한 화면간 예측을 통하여 부호화의 성능 개선을 개선할 수 있다. 본 논문에서는 기존의 화면간 예측의 블록 크기를 $4{\times}4$ 블록까지 확장하여 화면간 예측부호화 성능을 개선한다. 실험결과 제안기법은 기존의 ITM 12.0 대비 다양한 테스트 시퀀스의 휘도성분에서 평균적으로 비트율 절감의 이득은 없으나 대부분의 클래스에서 성능개선을 보였고 추가적인 최적화가 필요함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.