• Title/Summary/Keyword: 성능시험기

Search Result 1,790, Processing Time 0.032 seconds

Sub-System Requirements of a Pressure-fed Hot-firing Test Facility for the Performance Assessment of a LRE Thrust Chamber (액체로켓엔진 연소기의 성능평가를 위한 가압식 연소시험설비의 구성 요구조건)

  • Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.94-102
    • /
    • 2011
  • Sub-system requirements of a pressure-fed hot-firing test facility for performance assessment of a Liquid Rocket Engine(LRE) thrust chamber using Liquid oxygen and kerosene were described. These requirements were based on the experience of construction and operation of the ground hot-firing test facility which was used for the development of the KSR-III and a 30 tonf-class LRE thrust chamber. So it is expected that this paper is used as a basic material and an itemized previous review statement for the design and construction of a large hot-firing test facility.

Sub-System Requirements of a Pressure-fed Hot-firing Test Facility for the Performance Assessment of a LRE Thrust Chamber (액체로켓엔진 연소기의 성능평가를 위한 가압식 연소시험설비의 구성 요구조건)

  • Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.63-71
    • /
    • 2010
  • Sub-system requirements of a pressure-fed hot-firing test facility for performance assessment of a Liquid Rocket Engine(LRE) thrust chamber using Liquid oxygen and kerosene were described. These requirements were based on the experience of construction and operation of the ground hot-firing test facility which was used for the development of the KSR-III and a 30 $ton_f$-class LRE thrust chamber. So it is expected that this paper is used as a basic material and an itemized previous review statement for the design and construction of a large hot-firing test facility.

  • PDF

Life Firing Test of 1 N-class Monopropellant Thruster Development Model -Part I: Environmental Test and Steady State Performance (1 N급 단일추진제 추력기 개발모델의 장기수명 연소시험 -Part I: 환경시험 및 연속모드 성능 특성)

  • Won, Su-Hee;Kim, Su-Kyum;Jun, Hyoung-Yoll;Lee, Jun-Hui;Park, Su-Hyang;Lee, Jae-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • Acceptance level random vibration and life firing test for development model of 1 N-class monopropellant thruster have been performed. From the results of random vibration, the natural frequency of the dual thurst module composed of 1 N-class development model thrusters was higher than the part level requirement(>100 Hz) and the structural robustness was verified. Thrust decrease of steady sate was below 7% and thrust instability was within ${\pm}5%$ in the life firing test using over 20 kg propellant throughput. The computerized tomography for catalyst bed showed a less than 7% of catalyst loss and it revealed the design appropriateness of the current thruster development model.

자동차용 방열기의 수명분포 추정

  • Hong, Yeon-Ung;Gwon, Yong-Man
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.177-180
    • /
    • 2003
  • 본 연구에서는 자동차용 방열기의 수명분포를 일반적으로 기계류에 적용하는 와이블분포라 가정하고 실험실 데이터를 이용하여 추정한다. 방열기 수명시험시 고려해야할 요소를 방열량, 기밀성, 내압 성능, 압력캡 시험 등 11가지로 정하고 이에 대한 신뢰성 관점에서의 해석 및 MINITAB을 이용한 추정을 주요내용으로한다.

  • PDF

Preliminary design of lunar lander ground test model (달착륙선 지상 시험 모델을 위한 추진시스템 기본 설계)

  • Kim, Su-Kyum;Yu, Myoung-Jong;Choi, Ji-Yong;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.27-30
    • /
    • 2011
  • For the successful development of korean lunar lander, the ground test is required in order to verify performance of propulsion system, attitude control system, performance of landing device and etc. In order to develop the lunar lander ground test model, development of large size thruster and pressure regulated propulsion system is now in progress. In this paper, the results of 200N class monopropellant thruster development and propulsion system design will be presented.

  • PDF

Hot-fire Performance Test of Hydrazine Decomposition Catalyst (하이드라진 분해촉매 연소성능 시험)

  • Jang Ki-Won;Lee Hae-Heun;Yu Myoung-Jong;Lee Kyun-Ho;Lee Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.292-295
    • /
    • 2004
  • Firing performance test of hydrazine decomposition catalyst which is used in mono-propellant thruster of satellite and launcher was peformed. Equipment for catalyst test was developed and with this equipment reaction delay time, catalyst activity, granule stability of the catalyst firing performance was measured and analyzed.

  • PDF

Definition of Engine Component Performance Test Range of 75tf Class Gas Generator Cycle Liquid Propellant Rocket Engine (75톤급 가스발생기 사이클 액체로켓엔진의 시험영역과 엔진 구성품 시험 영역의 결정)

  • Nam, Chang-Ho;Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.91-97
    • /
    • 2011
  • A test range for a 75tf class gas generator cycle liquid propellant rocket engine is defined. The engine system test range is defined by the performance variation during flight, the dispersion after engine calibration, and additional margin. The component development test range includes the operation range corresponding to the engine system test range and the component performance margin.

원격탐사위성의 탑재체자료전송장치를 위한 시험검증장비의 개발

  • Lee, Sang-Taek;Jin, Yeong-Bae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.228.2-228.2
    • /
    • 2012
  • 본 논문에서는 탑재체자료전송장치의 시험검증을 위한 장비 개발에 관하여 소개 한다. 원격탐사위성에 탑재되는 고성능원격측정센서는 대용량 데이터를 생성하며 탑재체자료전송장치를 통하여 고주파통신에 의해 지상으로 전송된다. 따라서 탑재체자료전송장치의 검증은 전체 인공위성 개발에 있어서 매우 중요하다. 시험검증장비는 송신되는 수신자료를 수신하여 여러 장비로 분배해주는 고주파신호분배모듈, 계측기 및 복조기 등 다양한 장비로 구성된다. 시험검증장비는 고성능 고주파신호 부품, 다양한 전자장비와 이를 통합, 제어 운영하는 다양한 복잡한 소프트웨어가 필요하여 개발이 어렵다. 본 논문에서는 초기 제작 시험검증장비와 최종 제작 시험검증장비 사이의 차이와 성능, 기능의 향상을 위한 설계변경 등을 통하여 이에 대한 어려움을 극복한 과정과 설계 근거와 장비 선택 등 제반사항에 대하여 기술하여 이후 관련 유사장비의 개발에 있어 도움이 되고자 한다.

  • PDF

Definition of Engine Component Performance Test Range of 75tf class Gas Generator Cycle Liquid Propellant Rocket Engine (75톤급 가스발생기 사이클 액체로켓엔진의 시험영역과 엔진 구성품 시험 영역의 결정)

  • Nam, Chang-Ho;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.51-56
    • /
    • 2011
  • A test range for a 75tf class gas generator cycle liquid propellant rocket engine is defined. The engine system test range is defined by the performance variation during flight, the dispersion after engine calibration, and additional margin. The component development test range includes the operation range corresponding to the engine system test range and the component performance margin.

  • PDF

Experimental performance evaluation and comparison for lightweight piezo-composite actuator LIPCA (압전 복합재료 작동기 LIPCA에 대한 성능 비교실험 및 분석)

  • 김균열;박기훈;윤광준;박훈철
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.41-47
    • /
    • 2003
  • This paper is concerned with the performance evaluation and comparison analysis fur several kinds of LIPCA (Lightweight Piezo-Composite Actuator) device system. LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer was sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. To investigate the effect of lay-up structure of the LIPCA on the actuating performance, four kinds of actuator with different lay-up stacking sequence were designed, manufactured, and tested. The performance of each actuator was evaluated using an actuator test system consisted of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. From the comparison of the performance of the LIPCA prototypes, it was found that the actuator with higher coefficient of unimorph actuator can generate larger actuating displacement.