• Title/Summary/Keyword: 성능분석모델

Search Result 4,627, Processing Time 0.047 seconds

An Extended Virtual LAM System Deploying Multiple Route Server (다중 라우트 서버를 두는 확장된 가상랜 시스템)

  • Seo, Ju-Yeon;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.2
    • /
    • pp.117-128
    • /
    • 2002
  • Virtual LAN (VLAN) is an architecture to enable communication between end stations as if they were on the same LAN regardless of their physical locations. VLAN defines a limited broadcast domain to reduce the bandwidth waste. The Newbridge Inc. developed a layer 3 VLAN product called VIVID, which configures a VLAN based on W subnet addresses. In a VIVID system, a single route server is deployed for address resolution, VLAN configuration, and data broadcasting to a VLAN. If the size of the network, over which the VLANS supported by the VIVID system spans, becomes larger, this single route server could become a bottleneck point of the system performance. One possible approach to cope with this problem is to deploy multiple route servers. We propose two architectures, organic and independent, to expand the original VIVID system to deploy multiple route servers. A course of simulations are done to analyze the performance of each architecture that we propose. The simulation results show that the performances of the proposed architectures depend on the lengths of VLAN broadcasting sessions and the number of broadcast data frames generated by a session. It has also been shown that there are tradeoffs between the scalability of the architecture and their efficiency in data transmissions.

Fall detection based on acceleration sensor attached to wrist using feature data in frequency space (주파수 공간상의 특징 데이터를 활용한 손목에 부착된 가속도 센서 기반의 낙상 감지)

  • Roh, Jeong Hyun;Kim, Jin Heon
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.31-38
    • /
    • 2021
  • It is hard to predict when and where a fall accident will happen. Also, if rapid follow-up measures on it are not performed, a fall accident leads to a threat of life, so studies that can automatically detect a fall accident have become necessary. Among automatic fall-accident detection techniques, a fall detection scheme using an IMU (inertial measurement unit) sensor attached to a wrist is difficult to detect a fall accident due to its movement, but it is recognized as a technique that is easy to wear and has excellent accessibility. To overcome the difficulty in obtaining fall data, this study proposes an algorithm that efficiently learns less data through machine learning such as KNN (k-nearest neighbors) and SVM (support vector machine). In addition, to improve the performance of these mathematical classifiers, this study utilized feature data aquired in the frequency space. The proposed algorithm analyzed the effect by diversifying the parameters of the model and the parameters of the frequency feature extractor through experiments using standard datasets. The proposed algorithm could adequately cope with a realistic problem that fall data are difficult to obtain. Because it is lighter than other classifiers, this algorithm was also easy to implement in small embedded systems where SIMD (single instruction multiple data) processing devices were difficult to mount.

A Study on the Detection Model of Illegal Access to Large-scale Service Networks using Netflow (Netflow를 활용한 대규모 서비스망 불법 접속 추적 모델 연구)

  • Lee, Taek-Hyun;Park, WonHyung;Kook, Kwang-Ho
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.11-18
    • /
    • 2021
  • To protect tangible and intangible assets, most of the companies are conducting information protection monitoring by using various security equipment in the IT service network. As the security equipment that needs to be protected increases in the process of upgrading and expanding the service network, it is difficult to monitor the possible exposure to the attack for the entire service network. As a countermeasure to this, various studies have been conducted to detect external attacks and illegal communication of equipment, but studies on effective monitoring of the open service ports and construction of illegal communication monitoring system for large-scale service networks are insufficient. In this study, we propose a framework that can monitor information leakage and illegal communication attempts in a wide range of service networks without large-scale investment by analyzing 'Netflow statistical information' of backbone network equipment, which is the gateway to the entire data flow of the IT service network. By using machine learning algorithms to the Netfllow data, we could obtain the high classification accuracy of 94% in identifying whether the Telnet service port of operating equipment is open or not, and we could track the illegal communication of the damaged equipment by using the illegal communication history of the damaged equipment.

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

Seismic Response Analysis of a Two-Mass Rack System Considering Frictional Behavior (마찰거동을 고려한 이중질량시스템의 지진응답해석)

  • Park, Kwan-Soon;Ok, Seung-Yong;Lee, Jeeho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.347-352
    • /
    • 2018
  • This study proposes seismic response analysis technique of a two-mass rack system which sustains heavy loads with frictional behavioral characteristics. In order to deal with the nonlinear frictional characteristics of the mass on the rack system, the equations of motion of the system has been derived and the appropriate numerical simulation technique has been developed. In order to examine the seismic performance of the proposed system, we consider two parameters that are expected to have great influence on the seismic performance of the system. One is the ratio of the two masses of the load and the rack structure, and the other is the friction coefficient between rack and loaded mass. A number of numerical simulations of the seismic response of structures with various natural frequencies for both parameters have been performed in order to investigate the seismic safety of the rack structures. From the simulated results. it is observed that the maximum displacement of the rack system tends to decrease drastically as the natural frequency of the structure increases regardless of the two parameters of mass ratio and friction coefficient. The proposed study provides important reference data to guarantee the seismic safety of the rack system by considering nonlinear frictional behavior of the loaded mass.

Wavelet-based Statistical Noise Detection and Emotion Classification Method for Improving Multimodal Emotion Recognition (멀티모달 감정인식률 향상을 위한 웨이블릿 기반의 통계적 잡음 검출 및 감정분류 방법 연구)

  • Yoon, Jun-Han;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1140-1146
    • /
    • 2018
  • Recently, a methodology for analyzing complex bio-signals using a deep learning model has emerged among studies that recognize human emotions. At this time, the accuracy of emotion classification may be changed depending on the evaluation method and reliability depending on the kind of data to be learned. In the case of biological signals, the reliability of data is determined according to the noise ratio, so that the noise detection method is as important as that. Also, according to the methodology for defining emotions, appropriate emotional evaluation methods will be needed. In this paper, we propose a wavelet -based noise threshold setting algorithm for verifying the reliability of data for multimodal bio-signal data labeled Valence and Arousal and a method for improving the emotion recognition rate by weighting the evaluation data. After extracting the wavelet component of the signal using the wavelet transform, the distortion and kurtosis of the component are obtained, the noise is detected at the threshold calculated by the hampel identifier, and the training data is selected considering the noise ratio of the original signal. In addition, weighting is applied to the overall evaluation of the emotion recognition rate using the euclidean distance from the median value of the Valence-Arousal plane when classifying emotional data. To verify the proposed algorithm, we use ASCERTAIN data set to observe the degree of emotion recognition rate improvement.

Design of Immersive Walking Interaction Using Deep Learning for Virtual Reality Experience Environment of Visually Impaired People (시각 장애인 가상현실 체험 환경을 위한 딥러닝을 활용한 몰입형 보행 상호작용 설계)

  • Oh, Jiseok;Bong, Changyun;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.11-20
    • /
    • 2019
  • In this study, a novel virtual reality (VR) experience environment is proposed for enabling walking adaptation of visually impaired people. The core of proposed VR environment is based on immersive walking interactions and deep learning based braille blocks recognition. To provide a realistic walking experience from the perspective of visually impaired people, a tracker-based walking process is designed for determining the walking state by detecting marching in place, and a controller-based VR white cane is developed that serves as the walking assistance tool for visually impaired people. Additionally, a learning model is developed for conducting comprehensive decision-making by recognizing and responding to braille blocks situated on roads that are followed during the course of directions provided by the VR white cane. Based on the same, a VR application comprising an outdoor urban environment is designed for analyzing the VR walking environment experience. An experimental survey and performance analysis were also conducted for the participants. Obtained results corroborate that the proposed VR walking environment provides a presence of high-level walking experience from the perspective of visually impaired people. Furthermore, the results verify that the proposed learning algorithm and process can recognize braille blocks situated on sidewalks and roadways with high accuracy.

Antibiotics-Resistant Bacteria Infection Prediction Based on Deep Learning (딥러닝 기반 항생제 내성균 감염 예측)

  • Oh, Sung-Woo;Lee, Hankil;Shin, Ji-Yeon;Lee, Jung-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.105-120
    • /
    • 2019
  • The World Health Organization (WHO) and other government agencies aroundthe world have warned against antibiotic-resistant bacteria due to abuse of antibiotics and are strengthening their care and monitoring to prevent infection. However, it is highly necessary to develop an expeditious and accurate prediction and estimating method for preemptive measures. Because it takes several days to cultivate the infecting bacteria to identify the infection, quarantine and contact are not effective to prevent spread of infection. In this study, the disease diagnosis and antibiotic prescriptions included in Electronic Health Records were embedded through neural embedding model and matrix factorization, and deep learning based classification predictive model was proposed. The f1-score of the deep learning model increased from 0.525 to 0.617when embedding information on disease and antibiotics, which are the main causes of antibiotic resistance, added to the patient's basic information and hospital use information. And deep learning model outperformed the traditional machine hospital use information. And deep learning model outperformed the traditional machine learning models.As a result of analyzing the characteristics of antibiotic resistant patients, resistant patients were more likely to use antibiotics in J01 than nonresistant patients who were diagnosed with the same diseases and were prescribed 6.3 times more than DDD.

Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV) (심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.239-247
    • /
    • 2019
  • An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.

Verification of Weight Effect Using Actual Flight Data of A350 Model (A350 모델의 비행실적을 이용한 중량 효과 검증)

  • Jang, Sungwoo;Yoo, Jae Leame;Yo, Kwang Eui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.13-20
    • /
    • 2022
  • Aircraft weight is an important factor affecting performance and fuel efficiency. In the conceptual design stage of the aircraft, the process of balancing cost and weight is performed using empirical formulas such as fuel consumption cost per weight in estimating element weight. In addition, when an airline operates an aircraft, it promotes fuel efficiency improvement, fuel saving and carbon reduction through weight management activities. The relationship between changes in aircraft weight and changes in fuel consumption is called the cost of weight, and the cost of weight is used to evaluate the effect of adding or reducing weight to an aircraft on fuel consumption. In this study, the problems of the existing cost of weight calculation method are identified, and a new cost of weight calculation method is introduced to solve the problem. Using Breguet's Range Formula and actual flight data of the A350-900 aircraft, two weight costs are calculated based on take-off weight and landing weight. In conclusion, it was suggested that it is reasonable to use the cost of weight based on the take-off weight and the landing weight for other purposes. In particular, the cost of weight based on the landing weight can be used as an empirical formula for estimating element weight and optimizing cost and weight in the conceptual design stage of similar aircraft.