With the recent development of artificial intelligence, a Long Short-Term Memory (LSTM) model that is efficient with time-series analysis is being used to increase the accuracy of predicting the inflow of dams. In this study, we predict the inflow of the Soyang River dam, using the LSTM model with the Sequence-to-Sequence (LSTM-s2s) and attention mechanism (LSTM-s2s with attention) that can further improve the LSTM performance. Hourly inflow, temperature, and precipitation data from 2013 to 2020 were used to train the model, and validate and test for evaluating the performance of the models. As a result, the LSTM-s2s with attention showed better performance than the LSTM-s2s in general as well as in predicting a peak value. Both models captured the inflow pattern during the peaks but detailed hourly variability is limitedly simulated. We conclude that the proposed LSTM-s2s with attention can improve inflow forecasting despite its limits in hourly prediction.
KIPS Transactions on Software and Data Engineering
/
v.12
no.3
/
pp.133-140
/
2023
The performance of lithium ion batteries depends on the usage environment and the combination ratio of cathode materials. In order to develop a high-performance lithium-ion battery, it is necessary to manufacture the battery and measure its performance while varying the cathode material ratio. However, it takes a lot of time and money to directly develop batteries and measure their performance for all combinations of variables. Therefore, research to predict the performance of a battery using an artificial intelligence model has been actively conducted. However, since measurement experiments were conducted with the same battery in the existing published battery data, the cathode material combination ratio was fixed and was not included as a data attribute. In this paper, we define a training data model required to develop an artificial intelligence model that can predict battery performance according to the combination ratio of cathode materials. We analyzed the factors that can affect the performance of lithium-ion batteries and defined the mass of each cathode material and battery usage environment (cycle, current, temperature, time) as input data and the battery power and capacity as target data. In the battery data in different experimental environments, each battery data maintained a unique pattern, and the battery classification model showed that each battery was classified with an error of about 2%.
Proceedings of the Korean Institute Of Construction Engineering and Management
/
autumn
/
pp.634-637
/
2003
A tele-operated hume concrete pipe laying machine has been developed to solve several problems on safety, quality, productivity, etc. It is required to propose a performance evaluation model and methodology in order to measure productivity, economic feasibility, quality and safety. The primary objective of this study is to propose a model and methodology for the performance evaluation of the developed tele-operated hume concrete pipe laying machine. Furthermore, this study evaluates its performance compared with the existing hume pipe laying work by using data which obtained in field trials. It is anticipated that the proposed model and methodology might be effectively used in analyzing the performance of other automation robots.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.67-70
/
2019
상호참조해결은 자연언어 문서 내에서 같은 개체를 나타내는 언급들을 연결하는 문제다. 대명사, 지시 관형사, 축약어, 동음이의어와 같은 언급들의 상호참조를 해결함으로써, 다양한 자연언어 처리 문제의 성능 향상에 기여할 수 있다. 본 논문에서는 현재 영어권 상호참조해결에서 좋은 성능을 내고 있는 BERT 기반 상호참조해결 모델에 한국어 데이터 셋를 적용시키고 표층형을 이용한 규칙을 추가했다. 본 논문의 모델과 기존의 모델들을 실험하여 성능을 비교하였다. 기존의 연구들과는 다르게 적은 특질로 정밀도 73.59%, 재현율 71.1%, CoNLL F1-score 72.31%의 성능을 보였다. 모델들의 결과를 분석하여 BERT 기반의 모델이 다양한 특질을 사용한 기존 딥러닝 모델에 비해 문맥적 요소를 잘 파악하는 것을 확인했다.
Link-16 is a data link that provides joint interoperability to the US Navy, Air Force and NATO. Currently, the military relies entirely on foreign SW and tools for test environment, tactical simulation training and interoperability verification test for Link-16 operation. Therefore, it is necessary to develop Link-16 based operation environment test tool. In this paper, Link-16 network operational performance analysis simulator was developed by analyzing the function of Link-16 foreign tools. It also implements the SIMPLE standard interface for interworking with foreign SW and tools. The functional model for Link-16 network operation performance analysis consists of pre-analysis, real-time operational analysis, and post-analysis functional model. Each functional model test was performed through SIMPLE interworking with foreign SW and tools. Link-16 network operation performance analysis If we replace foreign SW through simulator, we can perform tactical training, network design verification and operation (scenario) verification for our military.
Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.724-726
/
1998
본 논문에서는 방대한 양의 데이터를 실시간으로 처리하기 위한 병렬 디지털 신호처리시스템을 제안한다. 버스와 메모리의 구조가 다른 네 가지 신호처리부 모델을 제안하고 그들의 성능을 분석한다. 신호처리부의 분석은 소나 알고리즘을 실행하는데 소요되는 하드웨어 지연시간과 버스 지연시간의 합을 척도로 한 성능 분석과 보드의 복잡도를 비교하는 방법을 통하여 이루어졌다. 성능분석한 결과, 지역 메모리와 공유 메모리를 함께 사용하는 모델이 가장 효율적인 것으로 나타났다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.376-379
/
2018
본 논문의 목적은 오픈 소스로 공개된 3가지 한국어 형태소 분석기 (kkma, twitter 및 mecab-ko)를 비교해서 한국어 자연어 처리에 가장 적합한 분석기를 선정하는 것이다. 이를 위해, 자연어 처리 분야에서 중요한 단어 임베딩 방법론 중 하나인 word2vec 모델의 성능 검증 방법을 사용해서 각 형태소 분석기의 성능을 정량적으로 비교했다. 그 결과 mecab-ko 형태소 분석기가 최적임이 확인되었다. 단 성능 검증에 사용된 어휘가 오직 명사뿐이라는 한계가 있으므로, 향후 연구에서는 좀 더 다양한 품사에 대한 성능검증이 필요할 것으로 보인다.
Journal of the Earthquake Engineering Society of Korea
/
v.4
no.4
/
pp.53-61
/
2000
능동 제어기를 설계하기 위해서는 제어대상 구조물의 수학모델의 구해야한다. 그러나, 무한차원의 구조물에 대하여 정확한 모델을 구하는 것은 불가능하므로 유한차원인 저차원화된 모델을 사용하여 제어기를 설계한다. 그러나, 실제 구조물과 저차원화된 모델사이의 오차에 의하여 제어기의 성능이 저하가 되면 제어기와 구조물의 상호작용, 지진과 같은 오란 등의 불확실성, 지진시 구조물의 동적 특성 변화로 인하여 제어기의 성능이 더욱 저하가 된다. 이러한 저하 요인은 제어기 설계시 요구되는 구조물의 수학모델에 대한 불확실한 요소로 작용하기 때문에 제어성능의 저하를 일으키며 응답의 불안정을 유발하기로 한다. 본 연구에서는 질량형 능동제어기(AMD)가 설치된 3층 건물 모형의 모델 오차에 관한 불확실성을 반영한 강인제어기법을 적용하여 제어성능과 안정성을 실험을 통하여 분석하였다. 강인제어 기법인 $\mu$ 합성법에 요구되는 여러 가지 가중함수인 주파수필터는 건물과 AMD의 특성, 모델 오차, 제어율과 AMD 성능의 , 측정잡음 및 지진외란의 특성 등을 고려하여 정량적으로 선택되었다. $\mu$합성법에 의하여 제어기를 설계하였으며 강인성을 비교하기 위하여 불확실성이 고려되지 않는 LQG 기법에 의한 제어기를 선택하였다. $\mu$합성법은 규정된 불확성에 대하여 제어의 강인성을 가지므로 동적특성이 바뀐 건물모형에 관한 강인성을 LQG 기법에 의한 제어성능과 비교하였다. 그 결과 동적특성이 변화된 건물에 대하여 $\mu$합성법만이 제어의 효율성이 유지되는 강인성을 나타내었다.
Park, Sung-Wook;Kim, Jun-Yeong;Park, Jun;Jung, Se-Hoon;Sim, Chun-Bo
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.501-503
/
2022
초해상이란 해상도가 낮은 영상을 해상도가 높은 영상으로 합성하는 기술이다. 딥러닝은 영상의 해상도를 높이는 초해상 기술에도 응용되며 실현은 2아4년에 발표된 SRCNN(Super Resolution Convolutional Neural Network) 모델로부터 시작됐다. 이후 오토인코더 (Autoencoders) 구조로는 SRCAE(Super Resolution Convolutional Autoencoders), 합성된 영상을 실제 영상과 통계적으로 구분되지 않도록 강제하는 GAN (Generative Adversarial Networks) 구조로는 SRGAN(Super Resolution Generative Adversarial Networks) 모델이 발표됐다. 모두 SRCNN의 성능을 웃도는 모델들이나 그중 가장 높은 성능을 끌어내는 SRGAN 조차 아직 완벽한 성능을 내진 못한다. 본 논문에서는 SRGAN의 성능을 개선하기 위해 사전 훈련된 특징 추출기(Pre-trained Feature Extractor) VGG(Visual Geometry Group)-19 모델을 변경하고, 기존 모델과 성능을 비교한다. 실험 결과, VGG-19 모델보다 윤곽이 뚜렷하고, 실제 영상과 더 가까운 영상을 합성할 수 있는 모델을 발견할 수 있을 것으로 기대된다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.715-718
/
2024
추천 시스템을 통해 사용자의 만족도를 높여 매출 증대까지 기대할 수 있기에, 추천 시스템은 과거부터 활발하게 연구되어 왔다. 추천 시스템은 크게 선형 모델과 비선형 모델로 구분할 수 있는데, 각 모델이 주로 독자적으로 연구되어 통합된 성능 결과를 명확히 알 수 없는 경우가 많아, 두 모델 간 특성 차이를 명확히 파악하여 추천 상황에서 적합한 모델을 선택하기 어려운 문제가 있다. 따라서 본 연구에서는 선형 모델과 비선형 모델을 같은 데이터와 같은 환경, 같은 성능평가 지표로 실험하여 결과를 비교 및 분석해보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.