• Title/Summary/Keyword: 성능기반형 설계법

Search Result 40, Processing Time 0.027 seconds

Optimized Design of Intelligent White LED Dimming System Based on Illumination-Adaptive Algorithm (조도 적응 알고리즘 기반 지능형 White LED Dimming System의 최적화 설계)

  • Lim, Sung-Joon;Jung, Dae-Hyung;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1956-1957
    • /
    • 2011
  • 본 연구는 White LED를 이용하여 주변 밝기 변화에 빠르게 적응하는 퍼지 뉴로 Dimming Control System을 설계한다. 본 논문에서는 방사형기저함수 신경회로망(Radial Basis Function Neural Network: RBFNN)을 설계하여 실제 White LED Dimming Control System에 적용시켜 모델의 근사화 및 일반화 성능을 평가한다. 제안한 모델에서의 은닉층은 방사형기저함수를 사용하여 적합도를 구현하였고, 후반부의 연결가중치는 경사하강법을 사용한다. 이때 멤버쉽 함수의 중심점은 HCM 클러스터링 (Hard C-Means Clustering)을 적용하여 결정한다. 연결가중치는 4가지 형태의 다항식을 대입하여 출력을 평가하였다. 최종 출력의 최적화를 위하여 PSO(Particle Swarm Optimization)을 이용하여 은닉층 노드수 및 다항식 형태를 결정한다. 본 논문에서 제안한 LED Dimming Control System은 Atmega8535를 사용하여 PWM 제어 방식을 사용하고, 조도계(Cds)를 이용하여 LED의 밝기에 따른 주변의 밝기를 감지하여 조명에 적응시키는 방법을 적용하였다.

  • PDF

Fault Detection of BLDC Motor Using Serial Communication Based Parameter Estimation (시리얼 통신 기반 파라미터 추정에 의한 BLDC모터의 고장검출)

  • 서석훈;유정봉;우광준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.45-52
    • /
    • 2002
  • This paper presents fault detection scheme of Brushless DC(BLDC) motor drive system by estimating BLDC motor resistance using motor input and output data which is transmitted from data acquisition board to host computer over serial communication channel. Since communication time delay has a serious effect on performance, we use periodic and fixed communication protocol. Hence, the delay time is priory known. Simplified BLDC motor model and recursive least square algorithm is used for estimating motor resistance. By experiment result, we confirm the proposed scheme.

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (II-Proposal for the Seismic Design Procedure) (마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(II-내진설계 절차 제안))

  • Gil, Heungbae;Park, Sun Kyu;Han, Kyoung Bong;Yoon, Wan Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • In a previous paper, ambient vibration tests were conducted on a cable stayed bridge with resilient-friction base isolation systems (R-FBI) to extract the dynamic characteristics of the bridge and compare the results with a seismic analysis model. In this paper, a nonlinear seismic analysis model was established for analysis of the bridge to compare the difference in seismic responses between nonlinear time history analysis and multi-mode spectral analysis methods in the seismic design phase of cable supported bridges. Through these studies, it was confirmed that the seismic design procedures of the "Korean Highway Bridge Design Code (Limit State Design) for Cable Supported Bridges" is not suitable for cable supported bridges installed with R-FBI. Therefore, to reflect the actual dynamic characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure is proposed that applies the seismic analysis method differently depending on the seismic isolation effect of the R-FBI for each seismic performance level.

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.

Design of Automatic Guided Vehicle Controller with Built-in Programmable Logic Controller (PLC 내장형 무인 반송차(AGV) 제어기 설계)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.118-124
    • /
    • 2019
  • Recently, the industrial field has been changed to the smart factory system based on information and communication technology (ICT) in order to improve productivity, quality and customer satisfaction. The most important machine to realize the smart factory is the AGV(automatic guided vehicle) and the adoption of AGV is increasing. Generally, AGV is developed using general purpose PLC(Programmable Logic controller), but the price of AGV is expensive and its volume is large. On the other hand, the industrial field due to space constraints in the workplace is required the low cost AGV which can be minimization, expansion of function, and easily reconfiguration. Therefore, in order to solve these problems, this study is proposed a design method of AGV controller with built-in PLC, and evaluated its performance. In the results of the experimentation, it showed good performance (speed control error = 0.021[m/s], posture control error=2.1[mm]) for the speed and posture control. In this way, when applying the proposed AGV controller in this study to the industrial filed, it is possible to reduce the size and reconfigure at low cost.

Adaptive continual reassessment method: A maximum tolerated dose estimation method in phase I clinical trial (MTD 추정법: 적응형 연속 재평가 방법)

  • EunKyung Park;Eun Jeong Min
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.411-444
    • /
    • 2024
  • The objective of Phase I clinical trials is to ascertain the maximum tolerated dose (MTD) that is safe for human administration. Accurately determining the MTD within an acceptable safety margin is imperative, necessitating evaluations up to sufficiently high doses. To estimate the MTD, a plethora of methods have been developed, encompassing algorithm-based, model-based, and model-assisted techniques. In this paper, a new dose exploration method based on continual reassessment method (CRM) is proposed to address for the shortcomings of existing dose exploration methods. Through a comprehensive simulation study, this method's efficacy was compared against that of existing methodologies across a variety of scenarios. The findings from this study underscore its enhanced precision and safety in estimating the MTD, alongside a reduction in the number of subjects required for testing.

PSO-Based PID Controller for AVR Systems Concerned with Design Specification (설계사양을 고려한 AVR 시스템의 PSO 기반 PID 제어기)

  • Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.330-338
    • /
    • 2018
  • The proportional-integral-derivative(PID) controller has been widely used in the industry because of its robust performance and simple structure in a wide range of operating conditions. However, the AVR(Automatic Voltage Regulator) as a control system is not robust to variations of the power system parameters. Therefore, it is necessary to use PID controller to increase the stability and performance of the AVR system. In this paper, a novel design method for determining the optimal PID controller parameters of an AVR system using the particle swarm optimization(PSO) algorithm is presented. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. In order to assist estimating the performance of the proposed PSO-PID controller, a new performance criterion function is also defined. This evaluation function is intended to reflect when the maximum percentage overshoot, the settling time are given as design specifications. The ITAE evaluation function should impose a penalty if the design specifications are violated, so that the PSO algorithm satisfies the specifications when searching for the PID controller parameter. Finally, through the computer simulations, the proposed PSO-PID controller not only satisfies the given design specifications for the terminal voltage step response, but also shows better control performance than other similar recent studies.

Evaluation of Performance Based Design Method of Concrete Structures for Various Climate Changes (다양한 기후변화에 따른 콘크리트 구조물의 성능중심형 설계 평가)

  • Kim, Tae-Kyun;Shim, Hyun-Bo;Ahn, Tae-Song;Kim, Jang-Ho Jay
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • Currently, global warming has advanced by the usage of fossil fuels such as coal and petroleum. and the atmosphere temperature in the world of 100 years(1906~2005) has been risen $0.74^{\circ}C{\pm}0.18^{\circ}C$, IPCC announced that the global warming effect of last decade was nearly doubled compared to the changes($0.07^{\circ}C{\pm}0.02^{\circ}C$/10year) in the past 100 years. Moreover, due to the global warming, heat wave, heavy snow, heavy rain, super typhoon, were caused and are increasing to happen in the world continuously causing damages and destruction of social infrastructures, where concrete structures are suffering deterioration by long-term extreme climate changes. to solve these problems, the new construction technology and codes are necessary. In this study, to solve these problems, experiments on a variety of cases considering the temperature and humidity, the main factors of climate factors, were performed, and the cases are decided by temperature and humidity. The specimens were tested in compressive strength test and split tensile test by the curing age(3,7,28 days) morever, performance based design(PBD) method was applied by using the satisfaction curve developed from the experiment date. PBD is the design method that gathers the current experimental analysis and past experimental analysis and develops the material properties required for the structure, and carries out the design of concrete mix, and it is recently studied actively worldwide. Also, it is the ultimate goal of PBD to design and perform on structures have sufficient performance during usage and to provide the problem solving for various situations, Also, it can achieve maximum effect in terms of functionality and economy.

Experimental analysis of heat exchanger performance produced by laser 3D printing technique (레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.270-276
    • /
    • 2020
  • 3D printing is an additive manufacturing technology that can produce complex shapes in a single process for a range of materials, such as polymers, ceramics, and metals. Recent 3D printing technology has developed to a level that enables the mass-production through an improvement of the printing speed and the continuous development of applicable materials. In this study, 3D printing technology using a laser was applied to manufacture a heat exchanger for an air compressor in a railway vehicle. First, the optimal design of the heat exchanger was carried out by focusing on weight reduction and compactness as a shape suitable for 3D printing. Based on the design derived, heat exchanger prototypes were made of AlSi10Mg alloy material by applying the SLM technique. Moreover, the manufactured prototypes were attached to an existing air compressor, and the heat exchange performance of the compressed air was tested. The test results of the 3D printed prototypes showed a heat exchange performance of approximately 80% and 85% at low and high-pressure, respectively, compared to the existing heat exchanger. From the 𝓔-NTU method results with an external cooling air condition similar to that of the existing heat exchanger, the calculated heat transfer amount of 3D printed parts showed similar performance compared to the existing heat exchanger. As a result, the 3D printed heat exchanger is lightweight with good performance.