• Title/Summary/Keyword: 성능계측

Search Result 943, Processing Time 0.03 seconds

Compression Sensing Technique for Efficient Structural Health Monitoring - Focusing on Optimization of CAFB and Shaking Table Test Using Kobe Seismic Waveforms (효율적인 SHM을 위한 압축센싱 기술 - Kobe 지진파형을 이용한 CAFB의 최적화 및 지진응답실험 중심으로)

  • Heo, Gwang-Hee;Lee, Chin-Ok;Seo, Sang-Gu;Jeong, Yu-Seung;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.23-32
    • /
    • 2020
  • The compression sensing technology, CAFB, was developed to obtain the raw signal of the target structure by compressing it into a signal of the intended frequency range. At this point, for compression sensing, the CAFB can be optimized for various reference signals depending on the desired frequency range of the target structure. In addition, optimized CAFB should be able to efficiently compress the effective structural answers of the target structure even in sudden/dangerous conditions such as earthquakes. In this paper, the targeted frequency range for efficient structural integrity monitoring of relatively flexible structures was set below 10Hz, and the optimization method of CAFB for this purpose and the seismic response performance of CAFB in seismic conditions were evaluated experimentally. To this end, in this paper, CAFB was first optimized using Kobe seismic waveform, and embedded it in its own wireless IDAQ system. In addition, seismic response tests were conducted on two span bridges using Kobe seismic waveform. Finally, using an IDAQ system with built-in CAFB, the seismic response of the two-span bridge was wirelessly obtained, and the compression signal obtained was cross-referenced with the raw signal. From the results of the experiment, the compression signal showed excellent response performance and data compression effects in relation to the raw signal, and CAFB was able to effectively compress and sensitize the effective structural response of the structure even in seismic situations. Finally, in this paper, the optimization method of CAFB was presented to suit the intended frequency range (less than 10Hz), and CAFB proved to be an economical and efficient data compression sensing technology for instrumentation-monitoring of seismic conditions.

Performance Improvement of a Temperature and Humidity Measuring System for Strawberry Cultivation Greenhouse (딸기재배 온실용 온습도 계측시스템의 성능개선)

  • Jeong, Young Kyun;Lee, Jong Goo;Ahn, Enu Ki;Seo, Jae Seok;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.110-119
    • /
    • 2020
  • This study investigates the improvement in the performance of a temperature and humidity measuring system developed by Company A using the Aspirated Radiation Shield (ARS). The shield has been used in the industry and its accuracy was verified recently. The study also experimentally examines the impact of the wind speed of the ARS device on temperature and humidity. The results are summarized as follows. Before the improvement of the system, the temperature of Company A's system was up to 10.2℃ higher than that measured by the ARS device, and the measured relative humidity was approximately 20.0% lower. After improving the system, the temperature and relative humidity of nodes 1 and 2 were found to be almost identical. The temperature deviations including the maximum, mean, and minimum temperatures between those measured in node 2 and by ARS were approximately 0.2 to 0.7℃, respectively; further, the values measured by ARS tended to be slightly lower or higher. In terms of relative humidity, the ARS measurements yielded values approximately 10.0% higher immediately after sunset; otherwise, the values were approximately 1.9% lower. Moreover, when node 1 was set to minimum-middle, middle-maximum, and maximum, the deviations including the maximum, mean, and minimum temperatures of nodes 1 and 2 were 0.1 to 0.4℃, 0.0 to 0.2℃, and 0.0 to 0.5℃, respectively. The deviations including the maximum, average, and minimum temperatures of the three points of node 1 and the ARS ranged from 0.2 to 0.5℃, 0.1 to 2.2℃, and 0.1 to 1.1℃, respectively, indicating that the temperature deviation according to the wind speed was negligible. In addition, considering the results of the previous study with those from this study, the optimal wind speed to improve the temperature deviation is considered to be in the range of 1.0~2.0 m·s-1.

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

Acoustic Scattering Characteristis of the Individual Fish (어체의 초음파 산란특성에 관한 연구)

  • 신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.21-30
    • /
    • 1991
  • The estimation of the fish biomass density or the size of fish by means of the acoustic equipment is an important part in the quantitative assessment of fisheries resources. The precision of such estimates depend upon the target strength of fish and the accuracy to which the acoustic equipment has been calibrated. This paper examine the accuracy of the digital measurement system which is manufactured by way of trial in order to masure the target strength of fish, and calibrations of that system carry out with an ogive and a ellipsoid made of the aluminum and the epoxy, respectively. Furthermore, measurements of target strength for eight species of fish are made at 25, 50, 100 kHz. The accuracy of the digital measurement system is compared the theory with measurements on ogive and ellipsoid, and the agreement is reasonable. Result of establishments on the target strength to fish length and to fish weight regression obtained from the measurements are available to provide the methods of design for use in interpreting acoustic measurements of fish abundance on the experimented eight species.

  • PDF

Study on Strain Measurement of Agricultural Machine Elements Using Microcomputer (Microcomputer를 이용(利用)한 농업기계요소(農業機械要素)의 Strain 측정(測定)에 관(關)한 연구(硏究))

  • Kim, Kee Dae;Kim, Tae Kyun;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 1981
  • To design more efficient agricultural machinery, the accurately measuring system among many other factors is essential. A light-beam oscillographic recorder is generally used in measuring dynamic strain but it is not compatible with the extremely high speed measuring system such as 1,000 m/s, also is susceptable to damage due to vibration while using the system in field. The recorder used light sensitive paper for strip chart recording. The reading and analysis of data from the strip charts is very cumbersome, errorneous and time consuming. A microcomputer was interfaced with A/D converter, microcomputer program was developed for measuring, system calibration was done and the strain generated from a cantilever beam vibrator was measured. The results are summarized as follows. 1. Microcomputer program was developed to perform strain measuring of agricultural machine elements and could be controled freely the measuring intervals, no. of channels and no. of data. The maximum measuring speed was $62{\mu}s$. 2. Calibration the system was performed with triangle wave generated from a function generator and checked by an oscilloscope. The sampled data were processed using HP 3000 minicomputer of Chungnam National University computer center the graphical results were triangle same as input wave and so the system have been out of phase distorsion and amplitude distorsion. 3. The strain generated from a cantilever beam vibrator which has free vibration period of 0.019 second were measured by the system controlled to have l.0 ms of time interval and its computer output showing vibration curve which is well filted to theoretical value. 4. Using microcomputer on measuring the strain of agricultural machine elements could not only save analyzing time and recording papers but also get excellent adaptation to field experiment, especially in measurement requiring high speed and good precision.

  • PDF

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

An Improved CBRP using Secondary Header in Ad-Hoc network (Ad-Hoc 네트워크에서 보조헤더를 이용한 개선된 클러스터 기반의 라우팅 프로토콜)

  • Hur, Tai-Sung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • Ad-Hoc network is a network architecture which has no backbone network and is deployed temporarily and rapidly in emergency or war without fixed mobile infrastructures. All communications between network entities are carried in ad-hoc networks over the wireless medium. Due to the radio communications being extremely vulnerable to propagation impairments, connectivity between network nodes is not guaranteed. Therefore, many new algorithms have been studied recently. This study proposes the secondary header approach to the cluster based routing protocol (CBRP). The primary header becomes abnormal status so that the primary header can not participate in the communications between network entities, the secondary header immediately replaces the primary header without selecting process of the new primary header. This improves the routing interruption problem that occurs when a header is moving out from a cluster or in the abnormal status. The performances of proposed algorithm ACBRP(Advanced Cluster Based Routing Protocol) are compared with CBRP. The cost of the primary header reelection of ACBRP is simulated. And results are presented in order to show the effectiveness of the algorithm.

  • PDF

Development of B4C Thin Films for Neutron Detection (스퍼터링 코팅기법을 이용한 중성자 검출용 B4C 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Cho, Sang-Jin;Choi, Young-Hyun;Park, Jong-Won;Moon, Myung Kook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • $^3He$ gas has been used for neutron monitors as the neutron converter owing to its advantages such as high sensitivity, good ${\gamma}$-discrimination capability, and long-term stability. However, $^3He$ is becoming more difficult to obtain in last few years due to a global shortage of $^3He$ gas. Accordingly, the cost of a neutron monitor using $^3He$ gas as a neutron converter is becoming more expensive. Demand on a neutron monitor using an alternative neutron conversion material is widely increased. $^{10}B$ has many advantages among various $^3He$ alternative materials, as a neutron converter. In order to develop a neutron converter using $^{10}B$ (actually $B_4C$), we calculated the optimal thickness of a neutron converter with a Monte Carlo simulation using MCNP6. In addition, a neutron converter was fabricated by the Ar sputtering method and the neutron signal detection efficiencies were measured with respect to various thicknesses of fabricated a neutron converter. Also, we developed a 2-dimensional multi-wire proportional chamber (MWPC) for neutron beam profile monitoring using the fabricated a neutron converter, and performed experiments for neutron response of the neutron monitor at the 30 MW research reactor HANARO at the Korea Atomic Energy Research Institute. The 2-dimensional MWPC with boron ($B_4C$) neutron converter was proved to be useful for neutron beam monitoring, and can be applied to other types of neutron imaging.