DOI QR코드

DOI QR Code

Performance Improvement of a Temperature and Humidity Measuring System for Strawberry Cultivation Greenhouse

딸기재배 온실용 온습도 계측시스템의 성능개선

  • Jeong, Young Kyun (Department of Agricultural Engineering Gyeongsang National Univ (Institute of Agriculture and Life Science, GNU)) ;
  • Lee, Jong Goo (Department of Agricultural Engineering Gyeongsang National Univ (Institute of Agriculture and Life Science, GNU)) ;
  • Ahn, Enu Ki (UBN Corporation) ;
  • Seo, Jae Seok (UBN Corporation) ;
  • Yoon, Yong Cheol (Department of Agricultural Engineering Gyeongsang National Univ (Institute of Agriculture and Life Science, GNU))
  • 정영균 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 이종구 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 안은기 ((주)유비엔) ;
  • 서재석 ((주)유비엔) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Received : 2020.02.27
  • Accepted : 2020.03.17
  • Published : 2020.04.30

Abstract

This study investigates the improvement in the performance of a temperature and humidity measuring system developed by Company A using the Aspirated Radiation Shield (ARS). The shield has been used in the industry and its accuracy was verified recently. The study also experimentally examines the impact of the wind speed of the ARS device on temperature and humidity. The results are summarized as follows. Before the improvement of the system, the temperature of Company A's system was up to 10.2℃ higher than that measured by the ARS device, and the measured relative humidity was approximately 20.0% lower. After improving the system, the temperature and relative humidity of nodes 1 and 2 were found to be almost identical. The temperature deviations including the maximum, mean, and minimum temperatures between those measured in node 2 and by ARS were approximately 0.2 to 0.7℃, respectively; further, the values measured by ARS tended to be slightly lower or higher. In terms of relative humidity, the ARS measurements yielded values approximately 10.0% higher immediately after sunset; otherwise, the values were approximately 1.9% lower. Moreover, when node 1 was set to minimum-middle, middle-maximum, and maximum, the deviations including the maximum, mean, and minimum temperatures of nodes 1 and 2 were 0.1 to 0.4℃, 0.0 to 0.2℃, and 0.0 to 0.5℃, respectively. The deviations including the maximum, average, and minimum temperatures of the three points of node 1 and the ARS ranged from 0.2 to 0.5℃, 0.1 to 2.2℃, and 0.1 to 1.1℃, respectively, indicating that the temperature deviation according to the wind speed was negligible. In addition, considering the results of the previous study with those from this study, the optimal wind speed to improve the temperature deviation is considered to be in the range of 1.0~2.0 m·s-1.

본 연구는 기존에 사용하여 왔고, 최근에 온습도의 정확도를 검증하였던 강제 흡출식 복사선 차폐장치(Aspirated Radiation Shield; ARS)를이용하여 모 기업(A 회사)에서 개발한 시스템의 성능을 개선하고, ARS 장치의 풍속이 온습도에 미치는 영향에 대해서도 시험적으로 검토하였다. 그 결과를 요약하면 다음과 같다. A 회사 제품의 시스템을 개선하기 전, A 회사 시스템의 온도는 ARS 장치로 측정한 온도보다 최대 10.2℃정도 높았고, 상대습도는 20.0%정도 낮게 나타났다. 시스템을 개선한 후, 노드 1, 2의 온도 및 상대습도는 거의 일치하는 것으로 나타났다. 개선 후의 노드 2와 ARS 장치로 측정한 온도간의 최고, 평균 및 최저온도를 포함한 온도편차는 각각 0.2~0.7℃정도로써 ARS 장치가 약간 낮거나 높게 나타나는 경향이 있었다. 상대습도의 경우, 일몰 직후 ARS 장치의 상대습도가 약 10.0%정도 높게 나타나는 경향이 있었지만, 그 이외에는 평균적으로 1.9%정도 ARS 장치가 약간 낮게 나타나는 경향이 있었다. 그리고 노드 1을 최소-중간 사이, 중간-최대 사이 및 최대로 설정한 경우, 노드 1, 2의 최고, 평균 및 최저온도를 포함한 편차는 각각 0.1~0.4℃, 0.0~0.2℃ 및 0.0~0.5℃정도였다. 그리고 노드 1의 3개 측점과 ARS 장치의 최고, 평균 및 최저온도를 포함한 편차는 각각 0.2~0.5℃, 0.1~2.2℃ 및 0.1~1.1℃정도의 범위로써 풍속의 크기에 따른 온도편차는 아주 미미한 것으로 나타났다. 또한 선행연구 및 본 연구의 결과를 종합하여 보면, 온도오차를 개선하기 위한 적정 풍속은 1.0~2.0m·s-1 정도의 범위일 것으로 판단되었다.

Keywords

References

  1. http://www.nongmin.com
  2. Jeong, Y.K., J.G. Lee, S.W. Yun, H.T. Kim, E.K. Ahn, J.S. Seo, and Y.C. Yoon. 2019a. Analyzing the performance of a temperature and humidity measuring system of a smart greenhouse for strawberry cultivation. Protected Hort. Plant Sci. 28:117-125 (in Korean). https://doi.org/10.12791/KSBEC.2019.28.2.117
  3. Jeong, Y.K., J.G. Lee, S.W. Yun, H.T. Kim, E.K. Ahn, J.S. Seo, and Y.C. Yoon. 2019b. Effects of an aspirated radiation shield on temperature measurement in a greenhouse. Protected Hort. Plant Sci. 28:78-85 (in Korean). https://doi.org/10.12791/KSBEC.2019.28.1.78
  4. Jeong, Y.K., J.G. Lee, S.W. Yun, H.T. Kim, and Y.C. Yoon. 2018. Field survey of greenhouse for strawberry culture - case study based on Western Gyeongnam Area-. Protected Hort. Plant Sci. 27:253-259 (in Korean). https://doi.org/10.12791/KSBEC.2018.27.3.253
  5. Konno, S. and H. Takahashi. 2012. Comparison of temperatures measured by using a natural ventilation radiation shield and an aspirated ventilation radiation shield of AMeDAS ststion. Geographical reports of Tokyo Metropolitan University. 47:39-49.
  6. Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(iPET). 2018 Summer. Innovation Chang. iPET. 71:2-3 (in Korean).
  7. Kurzeja, R. 2010. Accurate temperature measurements in a naturally-aspirated radiation shield. Boundary-Layer Meteorol 134:181-193. https://doi.org/10.1007/s10546-009-9430-2
  8. Lee, J.G., Y.K. Jong, S.W. Yun, M.K. Choi, H.T. Kim, and Y.C. Yoon. 2018. Field survey on smart greenhouse. Protected Hort. Plant Sci. 27:166-172 (in Korean). https://doi.org/10.12791/KSBEC.2018.27.2.166
  9. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2019a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2018. Press release. 2020. http//www.marfa.go.kr (in Korean).
  10. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2019b. Cultivation status of floricultural crop in 2018. Press release. 2020. http//www.marfa.go.kr (in Korean).
  11. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2019c. Major statistics of agriculture, food and rural affairs. Press release. 2020. http//www.marfa.go.kr (in Korean).
  12. Roh, G.K. and W.M. Suh. 1998. Computerized environmental control in greenhouse. ed. The Korean Society for Hightech Agricultural Facilities. Korea. p.140 (in Korean).
  13. Thomas, C.K. and A.R Smooth. 2013. An effective, economic aspirated radiation shield for air temperature observation and its spatial gradients. Journal of Atmospheric and Oceanic Technology. 30:526-537. https://doi.org/10.1175/JTECH-D-12-00044.1
  14. Yang, S.H., C.G Lee, J.Y. Kim, W.K. Lee, A.A Araghi, and J.Y. Rhee. 2012. Effects of fan-aspirated radiation shield for temperature measurement in greenhouse environment. J. of Biosystems Eng. 37:245-251 (in Korean). https://doi.org/10.5307/JBE.2012.37.4.245