• Title/Summary/Keyword: 섬유혼입 고강도 콘크리트

Search Result 142, Processing Time 0.025 seconds

Estimation of Optimum PP Fiber Content for the Spalling Control of High Strength Reinforced Concrete Columns (고강도 철근콘크리트 기둥의 폭열제어를 위한 최적의 PP섬유함유량 산정)

  • Kim, In Ki;Yoo, Suk Hyeong;Shin, Sung Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.155-163
    • /
    • 2007
  • High Strength Concrete (HSC) has weakness that in a fire, it is spalled and brittles. The phenomenon of spalling is made by water vapor's (resulting from evaporation in the material at over $100{^{\circ}C}$)' being confined in watertight concrete. As the concrete strength increases, the degree of damage caused by the spalling becomes more serious because of the permeability. It is reported that the polypropylene(PP) fiber has an important role in protecting concrete from spalling and the optimum dosage of PP fiber is 0.2%. This study was conducted on the nonreinforced concrete specimens. The high-temperature behavior of high-strength reinforced concrete columns with various concrete strength and various dosage of PP fibers was investigated in this study. The results show that the ratio of unstressed residual strength of columns increases as the concrete strength increases and the ratio of unstressed residual strength of columns increases as the dosage of PP fiber increases from 0% to 0.2%, however, the effect of fiber dosage on residual strength of column barely changes above 0.2%.

Mechanical Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Biaxial Compression (2축 압축을 받는 고강도 콘크리트 및 강섬유보강 고강도 콘크리트의 역학적 거동 특성)

  • Lim Dong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.803-809
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compression strength of 82.7MPa(12,000 psi) were made and tested. Four principal compression stress ratios ($\sigma_2/\sigma_1$=0.00, 050, 0.75 and 1.00), and four fiber concentrations($V_f$ =0.0, 0.5, 1.0 and $1.5\%$) were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete Increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5($\sigma_2/\sigma_1=0.5$) in the plain high strength concrete and the value were recorded $30\%$ over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure. The values of elastic modulus were also examined higher than that from ACI and CEB expression under biaxial compression condition.

Evaluation on Spalling Properties of Ultra High Strength Concrete with Melting and Vaporization of Fiber (유기섬유의 용융 및 기화에 따른 초고강도 콘크리트의 폭렬 특성 평가)

  • Kim, Gyu-Yong;Choe, Gyeong-Cheol;Lee, Joo-Ha;Lee, Seung-Hoon;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2012
  • Recently, experimental studies to prevent explosive spalling based on spalling mechanism and addition of Polypropylene fiber in high strength concrete (HSC) are performed actively. However, with respect to ultra high strength concrete (UHSC), its compact internal structure is more difficult release vapor pressure at rapid rising temperature compared to HSC. Therefore, in this study, an experiment was conducted to evaluate spalling properties of UHSC using ${\Box}$ $100mm{\times}100{\times}H200mm$ rectangular specimen according to ISO-834 standard fire curve. With respect melting point of fiber, three fiber types of Polyethylene, Polypropylene, and Nylon fibers with melting temperature of $110^{\circ}C$, $165^{\circ}C$, and $225^{\circ}C$, respectively, were considered. Mixed fiber of 0.15% and 0.25% of concrete volume was used to consider spalling properties based on water vapor pressure release. Then, TGDTA test on fiber and FEM analysis were performed. The results showed that it is difficult to prevent initial spalling without loss of fiber mass even if fiber melting temperature is low. Also, in preventing thermal spalling, fiber that melts to rapidly create porosity within 10 minutes of fire is more effective than that of low melting temperature property of fiber.

Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • Corbels are short cantilevers that project from the faces of a column and are a type of stress disturbed member, resisting both the ultimate shear force applied to them by the beam, and the ultimate horizontal force caused by shrinkage, temperature changes, and creep of the supported elements. Recently, as there have been an increase in the use of high-strength concrete and the concern about corrosion problems, lots of researches about hybrid reinforcing technique, applying strategically high performance reinforcements to the concrete elements, are performed. In this study, fiber reinforced high strength concrete corbels were constructed and tested for applying hybrid reinforcing technique to the corbels using steel fibers and headed bars. The results showed that the performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the steel fibers were added and the percentage of steel fibers was increased. In addition, the corbel specimens used headed bars as main tension ties showed superior load carrying capacities, stiffness, and ductility to the corbel specimens anchored main tension ties by welding to the transverse bars.

  • PDF

State-of-the-Art Research and Experimental Assessment on Fire-Resistance Properties of High Strength Concrete (고강도 콘크리트의 내화 특성에 관한 기존연구 고찰 및 실험적 연구)

  • Kim, Woo-Suk;Kang, Thomas H.K.;Kim, Wha-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.28-39
    • /
    • 2014
  • This paper reviews past literatures relevant to fire-resistance properties of high strength concrete and investigates spalling mechanism of high strength concrete in fire. First, literatures were reviewed on spalling occurrence and fire-resistance methods. Second, a chemical change of concrete components in an elevated temperature was presented. Finally, the mechanism of the spalling occurrence and spalling resistance were examined in terms of hybrid fiber content. The focus of the experimental study as part of this research is to investigate the effects of fire on the variation of thermal properties of high strength concrete, which tends to be used in super tall buildings. This experimental study was devised to investigate the fire-resistance performance of high strength concrete containing hybrid fibers. A total of 48 test specimens were exposed to high temperature ranging from $100^{\circ}C$ to $700^{\circ}C$, including room temperature (${\sim}20^{\circ}C$). Test results provide valuable information regarding fire-resistance properties of strength concrete with 100 MPa or greater.

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Experimental Study on the Development and Evaluation of Lt.Wt.& High Strength Composites Utilizing By-Products and Calcium Silicates for Construction Materials(1) (산업부산물 및 규산칼슘계 재료를 이용한 건재용 경량.고강도 복합체의 개발.평가에 관한 실험적 연구(기 1))

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.141-152
    • /
    • 1994
  • The results of an experimental study on the development and the evaluation of lightweight and high strength composites utilizing by-products and calcium silicates for construction materials are presented in this paper. The composites using early strength portland cement, by-Products( f1y ash, silica fume), silica powder, quick lime, gypsum, A1 powder and fibers(PAN-derived CF, alkali-resistance GF) were prepared using various mixing conditions. As the test results show, PAN-derived CF and alkali-resistance GF were suitable for rein-forcing fiber of the composites. And the mechanical properties,such as compressive tensile flexural strength, and toughness of Lt. Wt. fiber reinforced calcium silicates cement comp-osites were improved by increasing the fly ash and silica fume contents, and fiber contents, especially by increasing fiber contents the toughness of the composites were remarkably in-creased. Also, compressive tensile flexural strength,and toughness of the composites rein-forcing PAN-derived CF were higher than those of the composites reinforcing alkali-resistance GF..

Mechanical Properties of High Strength Concrete Subjected to Elevated Temperature Depending on Fiber Types and Contents (혼입 섬유종류 변화에 따른 고온가열 고강도 콘크리트의 역학적 특성)

  • Kim, Sang-Shik;Song, Yong-Won;Lee, Bo-Hyeong;Yang, Seong-Hwan;Kim, Seoung-Soo;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.95-98
    • /
    • 2007
  • This study investigates the mechanical properties of the high strength concrete in the region of 80MPa corresponding to the temperature and fiber content change. For the properties of the fresh, slump flow is $600{\pm}100mm$, and air content is $3.0{\pm}1.0%$. They satisfy each targets, and there was no difference for the each fiber types. As the propertied of the hardened concrete, the compressive strength at 28 days is indicated over 80MPa, and they are similar to the change of the fiber types. The residual compressive strength in response to the temperature change of the NY, PP, and NY+PP fiber at $200^{\circ}C$ are increased by 115, 114, and 110% on the standard condition, and it is suddenly decreased at $400^{\circ}C$. They are decreased by 33, 19, and 16% on the standard condition at $800^{\circ}C$.

  • PDF

Spalling Reduction Method of High-Strength Reinforced Concrete Columns Using Insulating Mortar (단열모르타르를 이용한 고강도콘크리트 기둥의 폭렬저감 방안)

  • Yoo, Suk-Hyeong;Lim, Seo-Hyeong
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.8-13
    • /
    • 2011
  • High Strength Concrete (HSC) has a disadvantage of the brittle failure under fire due to the spalling. The studies on spalling control method of new constructed HSC buildings were performed enough, but the studies on existing buildings are insufficient. The new inorganic refractory mortar is developed in this study. The insulating capacity is enhanced by using light weight fine aggregate and polypropylene (PP) fiber. In results of material test, the thermal conductivity of light weight fine aggregate get lower than general fine aggregate. And in results of column test, the fire resisting time is delayed 20 minutes by using light weight fine aggregate, 10 minutes by increasing finishing depth from 10 mm to 20 mm and 4 minutes by using 0.6 % PP fiber.

Spalling Reduction Method of High Strength Reinforced Concrete Columns Using Fibers (섬유를 활용한 고강도 콘크리트기둥의 폭렬제어방안)

  • Yoo, Suk-Hyeong
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.7-12
    • /
    • 2009
  • As the concrete strength increases the degree of damage caused by the spalling becomes more serious because of the permeability. It is reported that the polypropylene (PP) fiber has an important role in protecting concrete from spalling. However, the excessive usage of PP fiber would not useful in spalling control and would decrease the workability of ultra high strength concrete. The high-temperature behaviors of high-strength reinforced concrete columns with various dosage of PP fibers and three types of fire endurance fibers were observed this study. In results, the ratio of unstressed residual strength of columns, in case of concrete strength 60MPa, increases as the dosage of PP fiber increases from 0% to 0.2%, however, the effect of fiber dosage on residual strength of column barely changes above 0.2% and in case of concrete strength 120MPa, PVA fiber is the most suitable fire endurance fiber in accounting fire endurance performance and workability.