• Title/Summary/Keyword: 섬유판

Search Result 394, Processing Time 0.027 seconds

Surface Fracture Behaviors of Unidirectional and Cross Ply Glass Fiber/Epoxy Lamina-Coated Glass Plates under a Small-Diameter Steel Ball Impact (일방향 및 직교형 유리섬유/에폭시 복합재로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • Chang, Jae-Young;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.33-40
    • /
    • 2009
  • Fiber orientation effects on the impact surface fracture of the glass plates coated with the glass fiber/epoxy lamina layer were investigated using a small-diameter steel-ball impact experiment. Four kinds of materials were used: soda-lime glass plates, unidirectional glass fiber/epoxy layer(one ply, two plies)-coated, crossed glass tiber/epoxy layer (two plies)-coated glass plates. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates during the impact. With increasing impact velocity, various surface cracks such as ring, cone, radial and lateral cracks appeared near the impacted site of glass plates. Cracks in the plate drastically diminished by glass fiber coating. The tiber orientation guided the directions of delamination and plastic deformation zones between the tiber layer and the glass plate. Impact surface-fracture indices expressed in terms of the maximum stress and absorbed energy could be used as an effective evaluation parameter of the surface resistance.

An Experimental Study for Failure Behavior of Composite Beams with DFRCC and FRP Plank with Rib (리브를 갖는 FRP 판과 고인성섬유보강콘크리트로 이루어진 합성보의 파괴거동에 대한 실험적 연구)

  • Kang, Ga-Ram;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.16-23
    • /
    • 2016
  • DFRCC (ductile fiber reinforced cementitious composites), which are a significantly improved ductile material compared to conventional concrete, were evaluated as a new construction material with a high potential applications to concrete structures for a range of purposes. In this study, experiments on the failure behavior of composite beams with a DFRCC and FRP (fiber reinforced polymer) plank with a rib used as permanent formwork and tensile reinforcement were carried out. A normal concrete and a fiber reinforced concrete with PVA series of RF4000 and the PP series of PP-macro were used for comparison, and each RF4000+RSC15 and PP-macro+RSC15 was tested by producing composite beams. The experimental results of the FRP plank without a sand coating showed that sliding failure mode between the FRP plank and concrete started from a flexural crack at the beam center; therefore it is necessary for the FRP plank to be coated with sand and the effect of the fiber to failure mode did not appear to be huge. The experiment of the FRP plank with a sand coating showed that both 1200mm and 2000mm allowed sufficient bonding between the concrete and FRP plank. The maximum load of the fiber reinforced concrete was higher than that of normal concrete and the case which a series of PP fiber was mixed showed the highest value. The crack latency caused by the fibers led to composite action with a FRP rib.

Failure and Flexural Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판(CFRP Strip)으로 보강된 철근콘크리트 부재의 파괴거동 및 휨 거동 특성)

  • Lim, Dong Hwan;Park, Sung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.289-295
    • /
    • 2008
  • The purpose of this study was to examine the flexural behavior of reinforced concrete beams strengthened with CFRP strips. A total of 12 rectangular beams were tested. Test variables in this study were the shapes, bonded length and the number of longitudinal layers of CFRP strips. From the experimental study, flexural capacity of the beams strengthened with CFRP strips significantly increased compared to the reinforced concrete beam without a CFRP strip. Maximum increase of ultimate strength was found about 120% more than the control beam. In this test, most of the strengthened beams failed suddenly due to the debonding of CFRP strips. It is also observed that the debonding of the strip was initiated in the flexural zone of the beam and propagated rapidly to the end of the beam. The ultimate tensile strains of CFRP strips in this test were occurred at the level of 36% of rupture tensile strength of the CFRP strip, and an analytical approach to compute the flexural strength of reinforced beams strengthened with CFRP strips based on the effective stresses was conducted.

Effect of Strength Increasing Sizes on the Quality of Fiberboard (섬유판(纖維板)의 증강(增强)사이즈제(齊)가 재질(材質)에 미치는 영향(影響))

  • Shin, Dong So;Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.19-29
    • /
    • 1976
  • The fiberboard and paper mills in this country are much affected by the price hikes and shortage of phenolic resins, since phenolic acid as a raw material depends on imported good. It is prerequisite to fiberboard industry to help replace with other sized and stabilize the prices and supply of them, improving the quality of boards. Thus, the present study was carried out to examine the effect of strength increasing sized such as urea formaldehyde resin (anion and cation type) and urea melamine copolymer resin, on the quality of the wet forming hardboard, and comparing them with two types of proprietary modified melamine resins, and ordinary size, phenol resin. The Asplund pulp was prepared from wood wastes mixed with 20 percent of lauan and 80 percent of pines as a fibrous material. After sizing agents were added at a pH of 4.5 for 10 minutes with alum in the beater, the stock was made in the form of wet sheet, prepared, and then performed by hot pressing cycle: $180^{\circ}C$, $50-6-5kg/cm^2$, 1-2-7 minutes. The properties of hardboard were examined after air conditioning. The results obtained are summarized as follows: 1. There is a significant difference in specific gravity among hardboards that were treated with strength increasing resins, but no difference is effected by the increase in the resin content. In the case of modified melamine resin, its specific gravity is highest. The middle group comprises cation type of urea resin, anion type of urea resin, and acid colloid of urea-melamine copolymer resin. The lowest is phenolic resin. 2. The difference of the moisture content of hardboard both by the resins and by the amount of each resin applied is significant. The moisture content of hardboard becomes lower along with the increase of each resin content, but there is no difference between 2 and 3 percent. 3. For water absorption, there is a significant difference both in the adhesives used and in the amount of paraffin wax emulsion. The water resistance becomes higher inn proportion to the content of the paraffin wax emulsion. To satisfy KS F standards of the water resistance, a proprietary modified melamine resin (p-6100) and modified cation type of urea resin (p-1500) do not require any paraffin wax emulsion, but in the case of anion type of urea resin, cation type of urea resin, and urea-melamine copolymer resin, 1 percent of paraffin wax emulsion is needed, and 2 percent of paraffin wax emulsion in the case of phenolic resin. 4. The difference of flexural strength of hardboard both by the resins and by the amount of each resin is significant. Modified melamine resin shows the highest degree of flexural strength. Among the middle group are urea-melamine copolymer resin, p-1500, anion type of urea resin, and cation type of urea resin. Phenolic resin is the lowest. The cause may be attributable to factors combined with the pressing temperature, sizing effect, and thermal efficiency of press platens heated electrically. 5. Considering the economic advantages and properties of hardboard, it is proposed that urea-melamine copolymer resin and cation type of urea resin be used for the development of the fiberboard industry. It is desirable to further develop the modified urea-melamine copolymer resin and cation type of urea resin through continuous study.

  • PDF

Theoretical Analysis of Interface Debonding on the Strengthened RC Bridge Decks (성능향상된 RC 바닥판의 계면파괴 해석)

  • 오홍섭;심종성
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.668-676
    • /
    • 2002
  • Especially, when orthotropic material such as uni-dierectionally woven Carbon Fiber Sheet, resisting only the unidirectional tension, is used to strengthening bridge deck, the direction and width of the strengthening material should be considered very carefully. Thus, analysis of the failure characteristics and the premature failure mechanism of the strengthened decks based on the test results are required. In this study, the premature failure due to the interface debonding of strengthening material of the strengthened deck slab are inquired into failure mechanism through both experiments results and analyses with prototype strengthened deck specimens using carbon fiber sheet. From the test results, interface debonding of strengthening material is occured at the crack face

An Experimental Study of Fatigue and Static Behavior for Composite Deck Member (복합재료 바닥판 부재의 정적 및 피로거동에 관한 시험적 연구)

  • Kim, Doo-Hwan;Kim, Young-Chan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.15-21
    • /
    • 2011
  • It is required to accumulate experimental datum that make the theories easy to general technicians in order to use composite material widely on construction field. Therefore, we intend to present base technologies that evaluate static and fatigue performance according to the FRP deck section and offer the basis datum for FRP deck analyses and the design standards. As results of static tests, it can be shown that specimen with fabric direction has higher rigidity than that with normal to fabric direction and convergence for the datum. Due to this reason, it has more stable behavior by structural characteristics of matrix arrangement during destruction. For the fatigue tests, we found that by increasing the number of test repetition, test specimen with fabric direction had an crack just before the destruction, and the contact surface was detached.

Surface Fracture Response of Glass Eabric/Epoxy Lamina-Bonded Glass Plates to Impact with a Small-Diameter Steel Ball (직물형 유리섬유/에폭시 복합재료로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • 김형구;최낙삼
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.75-82
    • /
    • 2000
  • A small diameter steel-ball impact experiment was performed to study the impact resistance of the surface of glass plates bonded with glass fabric/epoxy lamina. Five kinds of materials were used in this study: soda-lime glass plates, glass/epoxy lamina(one layer)-bonded and unbonded glass plates, glass/epoxy lamina(three layers)-bonded and unbonded glass plates. The range of impact velocity was 40 120m/s. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates. With increasing impact velocity, various types of surface cracks such as ring, cone, radial and lateral cracks took place in the interior near the impacted site of glass plates. The cracks drastically decreased with glass/epoxy lamina coating. The surface fracture behavior could be evaluated using the maximum stress and the absorbed fracture energy.

  • PDF

Characteristics of Low Density Fiberboards Bonded with Different Adhesives for Thermal Insulation (II) - Formaldehyde·Total Volatile Organic Compounds Emission Properties and Combustion Shapes - (다양한 접착제로 제조한 단열재용 저밀도섬유판의 특성(II) - 폼알데하이드·총휘발성유기화합물 방출 특성 및 연소 형상 -)

  • Jang, Jae-Hyuk;Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.580-587
    • /
    • 2017
  • Woodfiber insulation board can be considered as a one of the key material for low energy consumption, comfortable and safety construction of residential space because of its eco-friendly and high thermal insulation performance. This study was carried out to investigate the formaldehyde (HCHO) total volatile organic compounds (TVOC) emission properties and combustion shapes by flame test of low density fiberboards (LDFs) prepared with different adhesives. HCHO TVOC emission and combustion properties of LDFs prepared by melamine urea formaldehyde (MUF), phenol formaldehyde (PF), emulsified methylene diphenyl diisocyanate (eMDI) and latex resin adhesives were measured by desiccator method, 20 L chamber method, and flame test, respectively. As results, LDFs manufactured by MUF, eMDI and latex resin adhesives satisfied the Super $E_0$ grade of HCHO emission performance except PF resin. Furthermore, TVOC emission of all LDFs were satisfied the Korean indoor air quality standard (below $400{\mu}g/m^2{\cdot}h$). Especially, LDF with eMDI resin adhesive showed the lowest HCHO and TVOC emissivity, that $0.14mg/{\ell}$, $12{\mu}g/m^2{\cdot}h$, respectively. However, eMDI emitted the small amount ($3{\mu}g/m^2{\cdot}h$) of toluene in VOC components. In the flame test, LDF with MUF resin adhesives showed the most favorable shape after flame test compare to LDFs prepared other adhesives. Based on HCHO and TVOC emission, and combustion shapes, MUF resin adhesive may be recommended to prepare LDF for insulation purpose.

Current Concepts of Degenerative Disc Disease -A Significance of Endplate- (퇴행성 추간판 질환의 최신 지견 -종판의 중요성-)

  • Soh, Jaewan;Jang, Hae-Dong;Shin, Byung-Joon
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.4
    • /
    • pp.283-293
    • /
    • 2021
  • Degenerative disc disease has traditionally been thought of as low back pain caused by changes in the nucleus pulposus and annulus fibrous, in recent studies, however, changes in the upper and lower endplates cause degeneration of the disc, resulting in mechanical pressure, inflammatory reactions and low back pain. Recently, the bone marrow of the vertebral body-endplate-nucleus pulposus and annulus fibrous were considered as a single unit, and the relationship was explained. Once the endplate is damaged, it eventually aggravates the degeneration of the bone marrow, nucleus pulposus, and annulus fibrosus. In this process, the compression force of the annulus fibrosus increases, and an inflammatory reaction occurs due to inflammatory mediators. Hence, the sinuvertebral nerves and the basivertebral nerves are stimulated to cause back pain. If these changes become chronic, degenerative changes such as Modic changes occur in the bone marrow in the vertebrae. Finally, in the case of degenerative intervertebral disc disease, the bone marrow of the vertebral body-endplate-nucleus pulposus and annulus fibrous need to be considered as a single unit. Therefore, when treating patients with chronic low back pain, it is necessary to consider the changes in the nucleus pulposus and annulus fibrosus and a lesion of the endplate.

Fracture Characteristics of RC Beams Reinforced with GFSP (유리섬유-강 복합판으로 보강된 RC 보의 파괴 특성)

  • Kim, Chung Ho;Jang, Hee Suk;Ko, Sin Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.153-159
    • /
    • 2007
  • This paper is experimental investigation for failure characteristics and performance of a RC beams strengthened with GFSP which were developed for improvement of the early debonding problems in the externally bonded FRP systems. To represent damages and load conditions of the existing beam, pre-cracks and repeating loads are adopted for experimental parameters. In this experiment, it is confirmed that strengthening with GFSP is a very effective strengthening method for an increase in strength, a decrease in deflection, a control of the crack. But it shown that the design of the beams to be strengthened with GFSP should be consider a brittle behavior of the grass fiber on the flexural capacity.