• Title/Summary/Keyword: 섬유요소

Search Result 646, Processing Time 0.048 seconds

Earthquake Response Analysis of Bridges Using Fiber Element Method (섬유요소를 이용한 교량의 비선형 지진응답해석)

  • Byun, Soon-Joo;Im, Jung-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.29-35
    • /
    • 2006
  • Fiber element method in earthquake response analysis of bridges is used to represents a realistic flexural deformation according to nonlinear behavior of beam-column section. Nonlinear pseudo-static analysis of two column bent using fiber element is accomplished and failure mechanism of the plastic hinge region is studied. Load-displacement curve obtained by nonlinear pseudo-static analysis can be applicable to earthquake response analysis by capacity spectrum method. The nonlinear time history analysis of a full bridge model using fiber element experienced by the ground motion corresponding to the target response spectrum is accomplished. The result of time history analysis is similar to that of capacity spectrum method.

Effects of Fiber Arrangements on Stress Distributions over the Transverse Cross Section of Unidirectionally Continuous Fiber-reinforced Composites (단방향 연속 섬유 복합재 횡단면에서 섬유 배열에 따른 응력 분포 변화)

  • Choi, Soohoon;Ji, Wooseok
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Stress distributions dependent on fiber arrangements are studied using the two-dimensional representative volume element (RVE) model for uni-directionally continuous fiber-reinforced composites subjected to transverse tensile loading. It is easily expected that the stresses around the fibers are concentrated mainly due to the stiffness mismatch between the fiber and matrix materials. In this presentation, it is shown that the stresses are not always increased although the distance between two fibers is shortened. The 2D RVE models, originally having a regular hexagonal fiber array, is utilized to study the effect of the fiber locations on the stress distributions. As the central fiber is relocated, the stress distributions around the fiber are obtained through finite element analysis. It is found that the stresses around the fiber are strongly dependent on the fiber distance as well as the angle between the loading direction and the line connecting two fibers.

Nonlinear Modeling of RC Shear Walls Using Fiber and Shear Spring Elements (전단스프링과 섬유요소를 이용한 철근콘크리트 전단벽의 비선형 해석모델에 관한 연구)

  • Lee, Kwang-Ho;You, Tae-Sang;Kim, Tae-Wan;Jeong, Seong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.559-566
    • /
    • 2012
  • In this study, fiber elements and a spring are used to build a reinforced concrete shear wall model. The fiber elements and the spring reflect flexural and shear behaviors of the shear wall, respectively. The fiber elements are built by inputting section data and material properties. The spring parameters representing strength and stiffness degradation, pinching, and slip were determined by comparing behaviors of fiber element and VecTor2 results. 'Pinching4' model in OpenSees is used for shear spring. The parameter selecting process for shear spring is a complicated and time consuming process. To study the applicability of the fiber element, reinforced concrete buildings containing a shear wall are evaluated using nonlinear dynamic analysis with various wall aspect ratio (H/L), various beam heights, and stiffness and flexural strength of beam and wall ratios. The aspect ratio of the wall showed distinct difference in IDR (interstory drift ratio) of the models with and without spring. On the other hand, the height of beam and ratio of stiffness and flexural strength of beam and wall did not show clear relation.

Computational analysis of sandwich shield with free boundary inserted fabric at hypervelocity impact (비구속 삽입된 직물 섬유를 이용한 샌드위치 쉴드의 초고속 충격 해석)

  • Moon, Jin-Bum;Park, Yu-Rim;Son, Gil-Sang;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • In this paper, a novel hybrid composite shield to protect space structures from hypervelocity impact of micrometeoroid and space debris is proposed. The finite element model of the proposed shield was constructed and finite element analysis was conducted to approximate the energy absorption rate. Before the final model analysis, analysis of each component including the aluminum plate, PMMA plate, and intermediate layer of fabric was performed, verifying the finite element model of each component. The material properties used in the analyses were predicted material property values for high strain rates. The analysis results showed that, other than the fabric, the energy absorption rate of each component was in agreement. Afterwards, the finite element model of the hybrid composite shield was constructed, where it was analyzed for the restrained and unrestrained fabric boundary condition cases. Through the finite element analysis, the fiber pullout mechanism was realized for the hybrid shield with free boundary inserted fabric, and it was observed that this mechanism led to energy absorption increase.

Chemical Properties of Slow-Released Nitrogen Fertilizer Using Waste Paper Slurry (폐지섬유를 이용한 완효성 요소비료의 특성)

  • Kim, Bok-Jin;Back, Jun-Ho;Lee, Byung-Guen
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.109-113
    • /
    • 2000
  • The purpose of this study was conducted to develop the slow-released N fertilizer(SRNF) using of waste paper cellulose. Properties of trial product was investigated. Contents of nitrogen, phosphorus, and potassium in trial product were showed 26%, 0.04 and 0.01%, respectively. The contents of Cr, Cu, Pb and Zn were showed 17.4ppm. 259ppm, 12.2ppm and 60.0ppm in the trial product, respectively. However, As and Cd was not detected. Nitrogen of SRNF could be released 60.4% within 12hr after dissolution in water. However, the releasing velocity was thereafter remarkably delayed, showing 75% after dissolution for 72hr.

  • PDF

Compressive Strength of FRP for Insulator According to Winding Angles (절연용 FRP의 와인딩 각도에 따른 압축강도 연구)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Myung, In-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1439-1441
    • /
    • 2003
  • 전기절연재의 구조재로 많이 사용되고 있는 FRP(fiber reinforced plastics)는 열경화성 수지를 접착성 결합제(binder)로 하고 고강도 섬유를 보강재로 한 복합재료로서 기계적, 화학적, 전기적 특성이 매우 우수하다. FRP의 기계적 강도는 유리섬유에 의존 하고 있으므로 유리섬유의 방향과 힘을 가하는 방향에 따라서 그 강도의 차이는 매우 크게 나타난다. 본 연구에서는 섬유의 배향에 따른 강도의 변화를 이해하기 위하여 시편을 제작하여 압축강도를 측정하고 압축강도와 응력의 분포를 유한요소법으로 시뮬레이션하였다. FRP rod에 압축응력이 가해졌을 때 섬유의 배향에 따른 파괴강도와 응력의 분포를 유한요소법을 이용하여 시뮬레이션하였고 모델링에는 3-D Shell과 3-D Brick 요소를 사용하였다. 제작된 시편의 강도특성과 시뮬레이션을 통한 응력의 분포를 서로 비교하여 시편의 파괴에 미치는 응력을 고찰하였다.

  • PDF

Development of the Big-size Statistical Volume Elements (BSVEs) Model for Fiber Reinforced Composite Based on the Mesh Cutting Technique (요소 절단법을 사용한 섬유강화 복합재료의 대규모 통계적 체적 요소 모델 개발)

  • Park, Kook Jin;Shin, SangJoon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.251-259
    • /
    • 2018
  • In this paper, statistical volume element modeling method was developed for multi-scale progressive failure analysis of fiber reinforced composite materials. Big-size statistical volume elements (BSVEs) was considered to minimize the size effect in the micro-scale, by including as many fibers as possible. For that purpose, a mesh cutting method is suggested and adapted into the fiber model generator that creates finite element domain rapidly. The fiber defect model was also developed based on the experimental distribution of the fiber strength. The size effects from the local load sharing (LLS) are evaluated by increasing the fiber inclusion in the micro-scale model. Finally, continuum damage mechanics (CDM) model to the fiber direction was extracted from numerical analysis on BSVEs. And it was compared with strength prediction from typical representative volume element (RVE) model.

Investigation on the validity of the rule of mixtures (복합재료 혼합법칙의 타당성 검토)

  • 이창성;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.111-117
    • /
    • 1999
  • 섬유강화 복합재료의 섬유와 수지까지 세부적으로 모델링이 가능한 Direct Numerical Simulation을 통해서 Boron/Aluminum 섬유강화 복합재료의 탄성계수들을 구해 보았다. 수치실험에서는 복합재료를 직교이방성 물질로 가정하였고, 특정 체적에 대한 평균치를 이용해서 물성치를 구하였으며, 혼합법칙에 의해서 구한 값 및 대표체적요소(Representative Volume Element)를 사용해서 구한 값들과 비교하였다. 혼합법칙의 경우, 섬유방향 인장계수(E₁)을 제외한 나머지 물성치들에 대해서는 상당한 차이를 나타내며, 이는 혼합법칙 유도과정에서 가정한 기본가정들이 적절하지 않기 때문이라는 것을 수치실험(Numerical Experiment)을 통해 알 수 있었다.

  • PDF

A Development of a Description System for Textile-Pattern Design Based on the Perceptual Features (지각적 속성에 기초한 섬유 패턴 디자인 요소 분석체계 개발)

  • 조현승;지상현;이주현
    • Science of Emotion and Sensibility
    • /
    • v.1 no.2
    • /
    • pp.55-63
    • /
    • 1998
  • 섬유 패턴 디자인을 체계적이고 객관적으로 기술할 수 있는 도구를 패턴 디자인의 지각적 속성에 기초하여 개발하였다. 세 단계로 이루어진 연구의 첫 단계에서는 패턴 디자인의 단계를 실제 디자인 과정에 기초하여 'PP의 디자인', 'RPU의 디자인', 'RPU의 배열'의 순서로 개념화한 후, 이 데 영역에 걸쳐 30개의 지각적 특징들을 추출하였고, 섬유 패턴 디자인을 충실히 기술할 수 있다는 것을 확인하였다. 다음으로 추출된 30개의 지각적 특징들을 'PP의 모양에 의한 돌출성', 'PP의 색채에 의한 돌출성', 'PP들 모양의 다양성'. 'PP들의 변화도', 'PP들 색채의 다양성', 'RPU의 돌출성', 'RPU의 다양성'이라는 7개의 상위 특징으로 수렴시킨 후, 이 7개의 상위특징들을 다시 'PP에 의한 다양성', 'RPU의 돌출성' 'RPU의 다양성'이라는 4개의 최상위 특징으로 수렵시키는 방식으로 위계화 하여 섬유 패턴 디자인 요소 분석체계를 구성하였다. 또한 대표적인 섬유 패턴 디자인에 대한 이 체계의 기술 가능성을 검토함으로써 본 체계를 수정·보완하였다.

  • PDF

Finite Element Analysis of Large Deformation of Fiber Metal Laminates Under Bending for Stress-Strain Prediction (굽힘하중을 받는 섬유 금속 적층판의 응력-변형률 예측을 위한 대변형 유한요소해석)

  • Yeom, Kyung Mi;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.963-970
    • /
    • 2015
  • Laminate structures are used in the automobile, aerospace, and display industries. The advantages of fiber metal laminates are well known. Fiber metal laminates are useful for reducing the weight and improving impact resistance . However, currently, the mechanical properties of fiber metal laminates are not derived. In this paper, we use thickness as a factor for comparing the properties of laminates of various thickness combinations. The properties fiber metal laminates are analyzed using design of experiments. In addition, the finite element method is used to analyze elastic and plastic strains of fiber metal laminates and aluminum plates. The final goal of this paper is to find a suitable finite element model of fiber metal laminates under bending.