• Title/Summary/Keyword: 섬유소 분해균

Search Result 60, Processing Time 0.035 seconds

Effects of Yeast Culture Supplementation on Rice Straw Digestibility and Cellulolytic Bacterial Community in the Rumen (볏짚 조사료에 대한 효모 배양물 첨가가 반추위 소화율 및 섬유소 분해균의 군락 변화에 미치는 영향)

  • Sung, Ha Guyn
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.41-49
    • /
    • 2013
  • In vitro and in situ incubation studies were conducted to determine effects of yeast culture supplements (Saccharomyces cerevisiae) on cellulolytic bacterial function and fiber digestion in rice straw. In vitro dry matter digestibility of rice straw gradually increased according to supplemental levels of yeast culture (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0%). Digestibility of rice straw started to increase apparently when yeast culture was added more than 0.6% level (p<0.05). Also, we reconfirmed that in vitro dry matter digestibility was significantly increased by 0.6% of yeast culture addition in 4% NaOH treated and non-treated rice straws (p<0.05). When in situ dry matter digestibility was tested in Korean native goats fed basal diet or experimental diet which contained 1.0% of yeast culture, the yeast culture feeding improved in situ dry matter digestibility in both 4% NaOH treated and non-treated rice straws (p<0.05). In case of real-time PCR monitoring cellulolytic bacterial function, the bacterial population attached on rice straw showed the increasing trends with higher level of yeast culture spraying on rice straw. F. succinogenes and R. flavefaciens were significantly increased in accordance to spraying levels of yeast culture (0.0, 0.1 and 0.3%) at both 12 and 24 hrs of in situ incubation (p<0.05). R. albus was significantly higher population in yeast culture spraying than non-soraying at 12 hrs of in situ incubation (p<0.05). These bacterial populations were showed the increasing trends with digestibility enhancement of rice straw according to the higher levels of yeast culture supplement. Overall, these results clearly suggest that the presence of yeast culture result in noticeable increase of rice straw digestion, which is modulated via good effect on cellulolytic bacterial attachment to fiber substrates.

Optimization for the Production Factors of Cellulolytic Enzymes of a Fungus, Strain FJ1 by Response Surface Methodology (반응표면 분석에 의한 사상균 Strain FJ1의 Cellulolytic Enzymes 생산조건의 최적화)

  • 김경철;유승수;오영아;이용운;전선용;김성준
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.195-202
    • /
    • 2002
  • The production conditions of cellulolytic enzymes by a fungus, strain FJ1, were optimized using response surface analysis. The culture factors which largely affected the production of enzymes such as cultivation time, carbon source concentration, nitrogen source concentration, and composition ratio of carbon sources were employed. Optimizedconditions of the factors above corresponding to each cellulolytic enzyme production were as fellowing: CMCase production was obtained in the conditions of cultivation time of 5.4 days, carbon source concentration of 3.5%, nitrogen source concentration of 0.6%, and composition ratio of carbon sources of 52:48 (avicel:CMC), xylanase appeared in the conditions of 5.3 days, 3.5%, 0.8%, and 54:46, respectively, and $\beta$-glucosidase were 7.0 days, 5.0%, 1.0%, and 83:17, respectively, and avicelase were 6.5 days, 4.0%, 0.9%, and 64:36, respectively. The activities of CMCase, xylanase, p-glucosidase, and avicelase predicted by the response surface methodology were 33.5, 52.6, 2.88, and 1.84 U/mL, respectively, and $\beta$-glucosidase activity was enhanced up to 74% when compared to that obtained in the experimental conditions.

Microbial Conversion of Woody Waste into Sugars and Feedstuff (II) - Production of Cellulolytic Enzymes from Aspergillus fumigatus and Saccharification of Popla Wood (미생물(微生物)에 의한 목질자원(木質資源)의 당화(糖化) 및 사료화(飼料化)에 관(關)한 연구(硏究) (II) - Aspergillus fumigatus KC-1으로부터 섬유소 분해 효소의 생산 및 현사시나무의 효소가수분해)

  • Chung, Ki-Chul;Huh, Jeong-Weon;Myung, Kyu-Ho;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 1987
  • The cellulolytic activities of Aspergillus fumigatus KC-1 was investigated, which showed the most active producer of cellulase among the 256 strains of cellulose-decomposing microorganisms screened in our laboratory. All the examined cellulolytic activities (filter paper-, Avicel-, cotton-, CMC-, salicin- and xylansaccharifying activity) in a culture of A. fumigatus KC-1 grown on 1% popular sawdust pretreated with peroxide alkaline reached a maximum within 4-5 days. The optimum pH and temperature for the enzymatic activity was found to be pH 4.5 and $60^{\circ}C$ respectively. The sawdust of poplar wood delignified with 1% NaOH and 20% peracetic acid succesively recorded the highest hydrolysis rate in the tests of enzymatic saccharification. The major end product of hydrolysis of poplar wood with the cellulolytic enzymes obtained from A. fumigatus KC-1 was glucose with small amount of cellobiose and xylose. It can be concluded from these results that A. fumigatus KC-1 is an advantagous source of a cellulase that is capable of hydrolyzing cellulose to glucose rapidly. The influence of degree of delignification, substrate size and its concentration on the rate of hydrolysis of poplar wood was also discussed.

  • PDF

Purification and Characterization of Carboxymethyl Cellulase IV from Penicillium verruculosum (Penicillium verruculosum 으로부터 Carboxymethyl Cellulase IV 의 정제(精製) 및 특성(特性))

  • Kim, Jeong-Ho;Lee, Jae-Chang;Lee, Yong-Kyu;Kim, Kang-Hwa;Chun, Soon-Bai;Chung, Ki-Chul
    • The Korean Journal of Mycology
    • /
    • v.21 no.1
    • /
    • pp.28-37
    • /
    • 1993
  • An endo-type cellulase, carboxymethyl cellulase(CMCase) IV, was purified from culture filtrate of cellulolytic fungus Penicillium verruculosum. The CMCase IV was acidic glycoprotein having carbohydrate of 13% as glucose and pI value of 4.0. The CMCase IV was 52 KDa of molecular weight in SDS-polyacrylamide gel electrophoresis and have optimum temperature and pH of $50^{\circ}C$ and 5.0 for enzyme activity. The CMCase IV liberated glucose and cellobiose as major products of the enzyme against carboxymethyl cellulose(CMC) and seemed to has transglycosylation activity simultaneously. Cellulase activity staining(zymogram) showed that the cellulase components of P. verruculosum were not aggregated in the medium. P. vrttuculosum mRNA was translated in vitro and translation product by the mRNA coding for CMCase IV was identified by immunoprecipitation.

  • PDF

Synergistic Effect of Substrates on the Biosynthesis of Cellulase and Xylanase Complexes from Aspergillus nidulans (Aspergillus nidulans 의 섬유질 분해효소계 생합성에 미치는 기질의 공조효과)

  • Lee, Jeong-Ae;Maeng, Jin-Soo;Maeng, Pil-Jae;Rhee, Young-Ha
    • The Korean Journal of Mycology
    • /
    • v.17 no.2
    • /
    • pp.57-65
    • /
    • 1989
  • The effect of various cellulosic and hemicellulosic substrates on the induction of cellulase and xylanase complexes in Aapergillus nidulans was investigated. The most efficient substrates for the induction of cellulase and xylanase complexes were carboxymethylcellulose for endoglucanase, cellobiose for ${\beta}-glucosidase$, and xylan for endoxylanase and ${\beta}-xylosidase$, respectively. However, the mixtures of these substrates, especially CMC-xylan and CMC-xylan-laminarin mixture, were much more effective not only for the enhancement of the biosynthesis of all the cellulase and xylanase complexes but also for the balanced production of these enzyme components than individual substrate. The polyacrylamide gel electrophoresis followed by activity staining showed the variation in the patterns and relative intensity of ${\beta}-glucosidase$, endoglucanase and endoxylanase components in individual enzyme preparations from A. nidulans cultures grown on different substrates. These results suggest that the biosynthesis is of cellulase and xylanase systems in A. nidulans is regulated in coordination at the level of induction.

  • PDF

The Effect of Ammonia and Sodium Hydroxide Treatment on the Storage and Rumen Microbial Fiber Degradation in Silage of Rice Straw Contaminated Mycotoxin (암모니아 및 가성소다 처리가 Mycotoxin 오염 사료용 볏짚의 사일레지 저장 및 반추위 미생물의 섬유소 분해에 미치는 영향)

  • Sung, Ha Guyn
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.2
    • /
    • pp.80-86
    • /
    • 2020
  • This study was conducted to research on the efficacy of chemical treatment as an effective method for reducing mycotoxin in rice straw silage. As a chemical treatment method, ammonia and sodium hydroxid were treated at 4% level of rice straws contaminated with mycotoxin, and the effects of silage storage on fungal toxin reduction, fermentation quality, and fiber digestion were evaluated. Aflatoxin B1, B2, G1, G2 and fumonisin B1, B2 as well as deoxynivalenol were not detected in all experimental groups, and ochratoxin A and zearalenone were detected. Ochratoxin A was detected lower in the chemical treatment than control (41.23 g / kg) (p<0.05). Zearalenone showed lower results in sodium hydroxide treatment (297.44 ㎍ / kg) than control (600.33 ㎍ / kg) and ammonia treatment (376.00 ㎍ / kg) (p<0.05). The pH of rice straw silage was the lowest in ammonia treatment and the highest in sodium hydroxide treatment (p<0.05). The lactic acid contents of control and ammonia treatments were similar, but sodium hydroxide treatment was the lowest (p<0.05). Propionic acid was higher in the control than in the chemical treatments (p<0.05), and showed similar contents in the ammonia and sodium hydroxide treatment. Both the rumen microbial degradation rate of NDF and ADF showed the highest in sodium hydroxide treatment, followed by ammonia treatment, and the control showed the lowest level (p<0.05). Therefore, the results of this study are demonstrated to have a good effect on the treatment of ammonia and sodium hydroxide to reduce the mycotoxins and increase the rumen microbial degradation rate in the rice straw silage. Sodium hydroxide treatment was more effective in reducing mycotoxins and improving fiber degradation rate than ammonia treatment, but it is thought to have an inefficient effect on silage fermentation in rice straw silage.

Studies on the Cellulolytic Enzyme System of Rhizopus sp. G-211 Isolated from Rotting Ginseng (인삼부패란중 Rhizopus sp. G-211이 생성하는 Cellulase 에 관한 연구)

  • 노혜원;김상달;도재호;강성호
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1982
  • A Rhizopus sp. was selected for its strong cellulolytic activity among various strains of molds found in rotting ginseng roots. Studies were made on some properties of the cellyloiytic enzyme produced by the strain. The results obtained were summarized as follows: The optimum pH of the enzyme was 4.5 and the range of its stability to the pH was 3.0 to 7.0. The optimum temperature was 5$0^{\circ}C$, while the enzyme was instantly inactivated above 6$0^{\circ}C$. Mn$^{++}$ and Co$^{++}$ ions increased enzyme activity and the metal ions were found to increased the ther-mostability of the enzyme. This enzyme was inhibited by sodium dodecyl sulfate and 2,4-dinitrophenol. This enzyme had a strong cellulolytic enzyme activity on various native cellulose given a sufficient reaction time. The addition of 0.5% saponin solution into reaction mixture increased the enzyme activity.

  • PDF

Optimum Conditions for the Simultaneous Saccharification and fermentation of Paper Sludge and Fermentation of paper Sludge to Produce lactic acid and viable Lactobacillus cells (제지 슬러지의 동시당화발효에서 젖산과 유산균 생산을 위한 최적 배양 조건)

  • 정다연;이상목;구윤모;소재성
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 2003
  • In this study of the simultaneous saccharification and fermentation (SSF) of paper sludge, fed-batch cultivation of Lactobacillus paracasei subsp. paracasei KLB58 was attempted to produce viable KLB58 cells and lactic acid. Optimal culture conditions, including the temperature and concentration of the supplemented enzyme, were examined in terms of lactic acid production and viable cell count. When the effects of culture temperature and $\beta$-glucosidase concentration were examined in fed-batch SSF, the highest viable cell counts and lactic acid production (i.e. 5$\times$$10^9$ CFU/ml and 45 g/L, respectively) were obtained at 37$^{\circ}C$ and 2 unit/ml of $\beta$-glucosidase.

Studies on the Microbial Utilization of Agricultural Wastes (Part 3) Effects of Alkali Treatments of the Wastes on the Production of Cellulosic Single-Cell Protein (농산폐자원의 미생물학적 이용이 관한 연구(제3보) -알카리 전처리가 -섬유소단세포단백 생산에 미치는 영향-)

  • Bae, Moo;Kim, Byung-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.2
    • /
    • pp.79-82
    • /
    • 1974
  • Present experiments were designed to estimate the effects of pretreatments by various kinds of alkalis to the agricultural wastes such as cereal straws as the substrate on the production of cellulosic single-cell protein. Among the various kinds of alkalis NaOH was proved to be the most effective on improving the digestibility of cellulose by the bacteria isolated. NH$_4$OH which is inferior to NaOH in the effectiveness of treatment might have more economic advantage in the price, and the ammonium salt resulted from the neutralization can be used as the nitrogen source by bacteria. The treatment with higher concentration than 1 normality of NH$_4$OH didn't increase the productivility of cell mass. About five per cent of (NH$_4$)$_2$SO$_4$ in medium resulted from the neutralization didn't have any influence in the cell mass productivility. Futhermore, the cell mass productibility was higher in the case of neutralization than alkali free washing. The digestibility of straws was increased from 7.9% to 46.0% by NH$_4$OH treatment, and 6.3∼6.45g of dry cell were obtained from 40g of NH$_4$OH treated straws. In the case of NaOH treatment, 8.6g of cell mass was obtained from 40g of substrate.

  • PDF

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential (혼합 메탄균과 반추위 섬유소 분해균 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of cellulose supplementing with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups were consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS and M+RA+FS including control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 40 days at $38^{\circ}C$ and anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum was used. In results, 5% FS increased total biogas and methane production up to 10.4~22.7% and 17.4~27.5%, respectively, compared to other groups (p<0.05). Total solid (TS) digestion efficiency showed a similar trend to the total biogas and methane productions. Generally the TS digestion efficiency of the FS group was higher than that of other groups showing at the highest value of 64.2% in the 5% FS group. Volatile solid (VS) digestion efficiencies of 68.4 and 71.0% in the 5% FS and the 5% RF were higher than other groups. After incubation, pH values in all treatment groups were over 6.4 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that the hydrolysis stage for methane production in anaerobic batch reactors was the late-limiting stage compared with the methanogenesis stage, and especially, as the supplementation levels of F. succinogenes supplementation increased, the methane production was increased in the BMP assay compared with other microbial culture addition.