• Title/Summary/Keyword: 섬유보강 고강도콘크리트

Search Result 131, Processing Time 0.025 seconds

A Processing and Flexural Performance Evaluation of Hybrid Organic Fiber Reinforced Concrete (하이브리드 유기섬유 보강 콘크리트의 제조 및 휨성능 평가)

  • Jeon, Chanki;Jeon, Joongkyu;Shim, Jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Organic fiber reinforced concrete is applicable to many applications for construction material. In general, organic fibers have low tensile strength and elastic modulus, but they have many advantages such as high crack resistance, impact resistance, chemical resistance, flexural behavior and corrosion resistance. In this study, hybrid organic fibers were prepared by mixing polyamide (PA) fibers and high strength polyester (PET) fibers. Then, flexural performance test of fiber reinforced concrete containing hybrid organic fiber was performed. The energy absorption capacity of the hybrid organic fiber reinforced concrete was evaluated.

Shear Mechanism of Steel-Fiber Reinforced High Strength Concrete Beams without Sheat Confinement (전단 보강이 없는 강섬유보강 고강도 철근 콘크리트보의 전단 거동에 관한 연구)

  • 오정근;이광수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.141-148
    • /
    • 1991
  • Investigations on the behavior of steel fiber reinforced high strength concrete beams subjected to predominant shear are accomplished to determine their diagonal shear strength including ultimate shear strength. The par¬ameters varied were the fiber volume fraction(Vf) of the steel-fibers and shear span to depth ratio(a/d). The test result show that diagonal shear strength and ultimate shear strength are increased significantly due to crack arrest mechamsm. Predictive equations are suggested for evaluating the diagonal cracking strength and ultimate shear strength of the fiber reinforced high strength concrete beams.

A Study on the Fire Resistance and Mechanical Properties of High Strength Concrete Mixed Hybrid Fibers (하이브리드 섬유 혼입 고강도 콘크리트의 내화 및 역학적 특성에 관한 연구)

  • Shin, Young-Suk;Li, Zhi-Min;Yoo, Myung-Hwan;Cho, Cheol-Hee;Kim, Jeong-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.67-75
    • /
    • 2010
  • In this paper, by using steel fiber, polypropylene fiber and these two hybrid fibers, the fire resistance performance and explosive properties of High Strength Concrete (HSC) with specified compressive strength of 40MPa are discussed. The paper also examines the bending resistance of the beam and the shearing resistance properties of non-reinforced HSC beam. This research helps to clarify the fire resistance of fiber HSC and its anti-explosion methods. The test results show that crack generation, explosion and carbonization can be effectively restrained when HSC is mixed with hybrid fibers under high temperature; furthermore, the maximum internal force and ductility are increased and the initial cracking can be restrained in the mechanical test.

Rheological Characteristics of Fiber-Reinforced High-Strength AFR Concrete (섬유보강 고강도 내화콘크리트의 레올로지 특성 분석)

  • Choi, Sun-Mi;Lee, Bum-Sik;Bae, Kee-Sun;Kim, Sang-Yun;Park, Su-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.543-544
    • /
    • 2009
  • The fiber(NY, PP) known to the effective material on improvement of the fire-resistance of HSC(high strength concrete) has a difference for fluidity according to the variation of a length and contents of fiber. In this study, to analyze the effect of a length and contents of the fiber on the fluidity of HSC and fheological characteristics, we calculated a viscosity of mortar by mini slump-flow, simple V-lot and viscometer. With the test results, the fluidity characteristic showed a moderate difference by a length and contents of the fiber, but showed a significant difference by increase of the fiber contents. ${\ast}$ AFR Concrete (Advenced Fire Resistant Concrete)

  • PDF

Seismic Performance Assessment of Roof-Level Joints with Steel Fiber-Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트를 적용한 최상층 접합부의 내진성능 평가)

  • Kim, Sang-Hee;Kwon, Byung-Un;Kang, Thomas H.-K.
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • This study was conducted to verify seismic performance of special moment frame's joints at roof-level with high-strength concrete and SD600 bars. K-RC-H was designed according to the seismic code and K-HPFRC-H had 150% of the original hoop spacing and 1.0% steel fiber volume fraction compared with K-RC-H. Both specimens had remarkable seismic performance without noticeable decrease in moment, but with very good energy dissipation before rebar failure. The U-bars in the joint sufficiently constrained rebar's action that pushed the cover upward. SD600 bars with $1.25l_{dt}$ had minimum slip in the joint. It was considered that the steel fiber contributed to improvement of the bending moment and joint shear distortion, and the result showed that it would be possible to increase the hoop spacing to 150% of the regular spacing.

Experimental Study on the Development and Evaluation of Lt.Wt.& High Strength Composites Utilizing By-Products and Calcium Silicates for Construction Materials(1) (산업부산물 및 규산칼슘계 재료를 이용한 건재용 경량.고강도 복합체의 개발.평가에 관한 실험적 연구(기 1))

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.141-152
    • /
    • 1994
  • The results of an experimental study on the development and the evaluation of lightweight and high strength composites utilizing by-products and calcium silicates for construction materials are presented in this paper. The composites using early strength portland cement, by-Products( f1y ash, silica fume), silica powder, quick lime, gypsum, A1 powder and fibers(PAN-derived CF, alkali-resistance GF) were prepared using various mixing conditions. As the test results show, PAN-derived CF and alkali-resistance GF were suitable for rein-forcing fiber of the composites. And the mechanical properties,such as compressive tensile flexural strength, and toughness of Lt. Wt. fiber reinforced calcium silicates cement comp-osites were improved by increasing the fly ash and silica fume contents, and fiber contents, especially by increasing fiber contents the toughness of the composites were remarkably in-creased. Also, compressive tensile flexural strength,and toughness of the composites rein-forcing PAN-derived CF were higher than those of the composites reinforcing alkali-resistance GF..

The Effects of Steel-Fiber Reinforcement on High Strength Concrete Replaced with Recycled Coarse Aggregates More Than 60% (순환굵은골재 60% 이상 사용한 고강도 콘크리트에 대한 강섬유 보강 효과)

  • Kim, Yoon-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.404-417
    • /
    • 2016
  • The purpose of this study is to examine the extent to which the deterioration in strength of high strength concrete of 60MPa replaced by a large amount of recycled coarse aggregates (more than 60% to 100% of replacement ratio) could be recovered with steel fiber reinforcement through material compressive strength test and shear failure test on short and middle beams and then to offer useful data for aggregate supply system of a sustainable resource circulation type. This study first examined the results of previous related tests. The results of the material compressive strength tests confirmed that when using a combination of steel fiber reinforcements of volumn ratio 0.75% and high quality recycled coarse aggregates with an water absorption rate within 2.0%, the strength characteristics of high strength concrete of 60MPa level were not only restored to the strength level of concrete made with natural aggregates, but also showed superior ductility. And the shear failure tests on short and middle beams using recycled coarse aggregates more than 60% with shear span to depth ratio (a/d) of 2 and 4 controlled by shear forces mainly confirmed that effects of superior shear strength increase and ductile behavior characteristics were showed by steel fiber reinforcements.

Reliability Analysis of Reduction Factor for Structural Design Guideline(draft) of Fiber Reinforced High Strength Concrete (섬유보강 고강도 콘크리트 구조설계지침(안)의 저감계수에 대한 신뢰도 분석)

  • Kim, Ah-Ryang;Choi, Jungwook;Paik, Inyeol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.100-108
    • /
    • 2021
  • The purpose of this study is to analyze the reliability index of a design by applying the reduction factor of the recently developed fiber reinforced high strength concrete design guideline(draft). By collecting material and member test data performed for the development of the design guideline(draft), statistical characteristics of material strength and member strength analysis equations are obtained. A simul ation that appl ies the material statistical characteristics and the member anal ysis equation of the design guidel ine(draft) is performed, and the statistical characteristics of the section strength are calculated by combining the statistical characteristics of the analysis equation. Reliability analysis was performed by applying the load combination of the domestic highway bridge design code and concrete structural code, and it was confirmed that the design that applies the reduction factor for materials and members suggested in the design guideline(draft) satisfies the target reliability index.

Numerical Analysis of Ultra High Performance Fiber Reinforced Concrete I-beam

  • Han, Sang-Mook;Guo, Yi-Hong;Kim, Sung-Wook;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.817-820
    • /
    • 2008
  • 이 논문은 초고강도 섬유보강 I형 보의 거동을 Diana를 사용하여 3차원 유한요소해석을 수행하였다. 보통 또는 고강도 콘크리트의 구성방정식과 달리 초고강도 섬유보강 콘크리트의 재료적 특성 즉, 인장 변형률 강화를 고려한 탄-소성 파괴 역학적 모델을 제안하여 해석에 반영하였다. 인장영역에서는 인장 변형률 강화를 고려한 다차원 고정 균열 규준을 사용하였고, 압축영역에서는 associated flow rule을 고려한 Drucker-Prager Criterion을 채택하였다. UHPFRC(Ultra-High Performance Fiber Reinforced Concrete) I형 보의 하중변형관계, 최초 균열, 최초 대각 균열, 극한상태 등의 결과를 실험결과와 비교하여 해석법의 유용성을 입증하였다.

  • PDF

Shear Behavior of Slender HSC Beams Reinforced with Stirrups using Headed Bars, High Strength Steels, and CFRP Bars (헤디드 바, 고장력 철근 및 CFRP 바로 전단보강된 세장 고강도콘크리트 보의 전단 거동 평가)

  • Yang, Jun-Mo;Kwon, Ki-Yeon;Choi, Hong-Shik;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2007
  • If conventional reinforcements are used for high-strength concrete (HSC) structures, a large amount of the reinforcement must be required to compensate for the brittleness of HSC and make the best use of HSC. This raises some structural problems such as steel congestion and an increase in self-weight. Therefore, alternative reinforcing materials and methods for HSC structures are needed. In this study, four full-scale beam specimens constructed with HSC (100 MPa) were tested to investigate the effect of the different shear reinforcements on the shear behavior. These four specimens were reinforced for shear stirrups with normal and high strength steels, headed bars, and carbon fiber-reinforced polymer (CFRP) bars, respectively. In addition, steel fibers were added to the HSC in the two of the specimens to observe their beneficial effects. The use of high strength steels resulted in the improvement of the shear capacity since the shear resistance provided by the shear reinforcements and the bond strength were increased. The specimen reinforced with headed bars also showed a superior performance to the conventional steel reinforced specimen due to the considerably high anchorage strength of headed bar. CFRP bars used in this research, however, seemed to be inadequate for shear reinforcement because of the inferior bond capacity. The presence of the steel fibers in concrete led to remarkable improvement in the ductility of the specimens as well as in the overall cracks control capability.