• Title/Summary/Keyword: 섬유보강 고강도콘크리트

Search Result 131, Processing Time 0.028 seconds

Nonlinear Finite Element Analysis of UHPFRC I-Beam on the Basis of an Elastic-Plastic Fracture Model (탄소성 파괴역학 모델에 근거한 초고강도 섬유보강 콘크리트 I 형보의 비선형 유한요소해석)

  • Han, Sang-Mook;Guo, Yi-Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.199-209
    • /
    • 2009
  • This paper deals with the three-dimensional finite element analysis of failure behavior of UHPFRC I-beam under monotonic load. Different from the constitutive law of normal and high strength concrete, an elastic-plastic fracture model that considers the tensile strain hardening is proposed to describe the material properties of UHPFRC. A multi-directional fixed crack criterion with tensile strain hardening is defined in the tensile region, and Drucker-Prager criterion with an associated flow rule is adopted in the compressive region. The influence of span, prestressing force and section on the behavior of UHPFRC I-beam are investigated. The comparison of the numerical results with the test results indicates a good agreement.

Enhancing the Performance of High-Strength Concrete Corbels Using Steel Fibers and Headed Bars (강섬유 및 헤디드 바를 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Shin, Hyun-Oh;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.697-703
    • /
    • 2009
  • High-strength concrete corbels with varying percentage of steel fibers and two different anchorage types (welding to transverse bar, headed) for the main tension tie were constructed and tested. The results showed that performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the percentage of steel fibers was increased. In addition, the corbel specimens in which headed bars were used as the main tension tie reinforcements showed superior load carrying capacities, stiffness, and ductility compared to the corbel specimens in which the main tension ties were anchored by welding to the transverse bars. From the test results, it is expected that load carrying capacities, durability, and constructibility of high strength concrete corbels would be improved by using steel fibers and headed bars. Experimental results presented in this paper were also compared with various prediction models proposed by researchers and presented in codes. The truss model proposed by Fattuhi provides fairly good predictions for fiber reinforced high-strength concrete corbels.

Reinforcement Effect of Reinforced Concrete Beams Strengthened with Grid-type Carbon Fiber Plastics (격자형 탄소섬유로 보강한 R/C보의 보강효과)

  • Jo, Byung-Wan;Tae, Ghi-Ho;Kwon, Oh-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.377-385
    • /
    • 2003
  • Flexural characteristics of the R.C beams strengthened with newly-developed grid-type carbon fiber plastics(CFRP-GRIDS) were investigated. The tests were conducted under the four-points load to the failure to investigate the strengthening effects of CFRP-GRIDS on the beams. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly, the appropriate area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

Fire Resistance Performance for Hybrid Fiber Reinforced High Strength Concrete Column Member (하이브리드 섬유보강 고강도콘크리트 기둥부재의 내화성능)

  • Won, Jong-Pil;Jang, Chang-Il;Lee, Sang-Woo;Kim, Heung-Youl;Kim, Wan-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.827-832
    • /
    • 2008
  • This study evaluated fire resistance performance for hybrid (polypropylene+steel) fiber reinforced high strength concrete column. Full-size columns were constructed and tested with or without fibers using ISO-834 fire curve. As the result of test, Control specimen occurred serious spalling and indicated rapidly internal temperature increasing. Specimen with polypropylene fiber occurred not spalling but steady internal temperature increasing. Specimen with hybrid fiber occurred not spalling as well as does not propagated temperature distribution. Therefore, hybrid fiber reinforced column specimen indicated a good fire resistance performance than other cases.

Batch Plant and Truck Agitator of Ready Mixed Concrete (레미콘의 혼합설비 및 적재 운반설비 관리)

  • Kang, Hun;Lee, Jong-Ryeol
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.33-39
    • /
    • 2002
  • 레미콘의 품질성능을 좌우하는 것은 콘크리트 사용재료 및 배합뿐만 아니라 레미콘을 제조하는 믹서 및 이를 현장까지 운반하는 트럭 에지테이터의 품질성능에 크게 좌우된다. 그러나, 레미콘 공장의 혼합 설비인 믹서 및 트럭 에지테이터에 관한 국내 자료는 거의 전무한 실정이며 이에 관한 연구도 상대적으로 매우 부족하다. 특히, 최근에는 고강도 콘크리트, 고유동 콘크리트, 고강도 경량 콘크리트, 수중불분리 콘크리트, 섬유보강 콘크리트 등 고성능 콘크리트 성능에 대한 요구가 날로 증가하는 추세이며 이에 따라 레미콘 공장에서도 혼합설비 및 운반설비가 고성능화 되어 가는 추세이다.(중략)

Reinforcing Characteristics of Hybrid Fiber Composite Fixed with Impact Anchor (타격식 앵커를 이용한 하이브리드 섬유보강재의 보강특성)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chin-Yong;Kim, Dong-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.453-456
    • /
    • 2008
  • Fiber composite is high anticorrosive, high strength and low weight ratio of strength(1/4 of reinforcing bar) so that strengthens concrete structures without increase of additional weight. But fiber composite has a brittle character which increases to the maximum stress point lineally and is suddenly destroyed. Hybrid fiber composite is developed to overcome weakness of fiber composite. The hybrid fiber composite is manufactured by bar type and consists of 9:1 volume ratio(glass : carbon). In this study the result indicates that it is purposed to find out reinforcing characteristics of hybrid fiber composite fixed with impact anchor.

  • PDF

Anchorage Strength of High Strength Headed Bar Embedded Vertically on SFRC Members (SFRC 부재에 수직 배근된 고강도 확대머리철근의 정착강도)

  • Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.148-156
    • /
    • 2020
  • The paper is a summary of the results of the basic pullout test which is conducted to evaluate the anchorage capacity of high strength headed bars that is mechanical anchored vertically on steel fiber reinforced concrete members. The main experimental parameters are volume fraction of steel fiber, concrete strength, anchorage length, yield strength of headed bars, and shear reinforcement bar. Both sides of covering depth of the specimen are planned to double the diameter of the headed bars. The hinged point is placed at the position of each 1.5𝑙dt and 0.7𝑙dt around the headed bars, and the headed bars are drawn directly. As a result of pullout test experiment, concrete fracture and steel tensile rupture appear by experimental parameters. The compressive strength of concrete is 2.7~5.4% higher than that of steel fiber with the same parameters, while the pullout strength is 20.9~63.1% higher than that of steel fiber without the same parameters, which is evaluated to contribute greatly to the improvement of the anchorage capacity. The reinforcements of shear reinforcements parallel to the headed bars increased 1.7~7.7% pullout strength for steel fiber reinforced concrete, but the effect on the improvement of the anchorage capacity was not significant considering the increase in concrete strength. As with the details of this experiment, it is believed that the design formula for the anchorage length of KCI2017and KCI2012 are suitable for the mechanical development design of SD600 head bar that is perpendicular to the steel fiber reinforced concrete members.

Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete (골재크기 및 섬유혼입률에 따른 강섬유 보강 고강도 콘크리트의 압축거동)

  • Ahn, Kyung-Lim;Jang, Seok-Joon;Jang, Sang-Hyeok;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.229-236
    • /
    • 2015
  • This paper describes the effect of aggregate size on compressive behavior of high-strength steel fiber reinforced concrete. The Specified compression strength is 60 MPa and the range of fiber volume fraction is 0~2%. The main variable is the aggregate size, which was used for the aggregate size of 8 and 20 mm. So, ten concrete mixtures were prepared and tested to evaluate the fresh and hardened properties of SFRC at curing ages (7, 14, 28, 56 and 91 days), respectively. Items estimated in this study are the fresh properties (air contents, slump), hardened properties (compressive strength, modulus of elasticity, post-peak response and compressive toughness). As a result, the aggregate size has little effect on the compressive strength and modulus of elasticity. On the other hand, the ductile behavior was shown after post peak and the compressive toughness was increasing as decreasing the aggregate size. These effects are clearly represented in the fiber volume fraction 2%, which are the point appeared fiber ball. It is considered that the decreasing the aggregate size has effect on the fiber dispersibility.

Bond Behavior of GFRP Rebars Embedded in Concrete Under Cyclic Loading (반복하중을 받는 GFRP 보강근의 부착특성)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.101-104
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Fiber Reinforced Polymer (FRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of FRP. However, there remain various aspects of FRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between FRP and concrete. In this study, the bond-behavior of FRP bars in concrete is investigated via the pullout test with three varying parameters: surface condition of FRP bars, concrete compression strength, and cyclic loading patterns. As a result of experiment, the bond strength of GFRP increased with the concrete compression strength increasing and decreased with applying cyclic load.

  • PDF

The Effect of Steel-Fiber Contents on the Compressive Stress-Strain Relation of Ultra High Performance Cementitious Composites (UHPCC) (UHPCC의 압축응력-변형률 관계에 대한 강섬유 혼입률의 영향)

  • Kang, Su-Tae;Ryu, Gum-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The effect of steel-fiber contents on the compressive behavior of ultra high performance cementitious composites (UHPCC) was studied to propose a compressive behavior model for UHPCC. The experiments considered fiber contents of 0~5 vol.% and the results indicated that compressive strength and corresponding strain as well as elastic modulus were improved as the fiber contents increased. Compared to the previous study results obtained from concrete with compressive strength of 100MPa or less, the reinforcement effect on strength showed similar tendency, while the effect on the strain and elastic modulus were much less. Strength, strain, and elastic modulus according to the fiber contents were presented as a linear function of fiber reinforcement index (RI). Fiber reinforcement in UHPCC had no influence on the shape of compressive behavioral curve. Considering its effect on compressive strength, strain, and elastic modulus, a compressive stress-strain relation for UHPCC was proposed.