• Title/Summary/Keyword: 섬유보강 고강도콘크리트

Search Result 131, Processing Time 0.021 seconds

Reinforcement Performance Evaluation Experiment Research of RC Structure Which High Strength Clear Glass Fiber Panel was Used (고강도 투명 유리섬유 패널을 이용한 RC구조물의 보강 성능평가 실험 연구)

  • Kang, In-Seok;Lee, Han-Seung;Lee, Ok-Sin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.121-124
    • /
    • 2005
  • The existing reinforcement methods of construction are the actual condition without the method of checking exact injection of adhesives clearly by the opacity of reinforcement material. In this study, in order to solve such a problem, the high strength transparent panel using a glass fiber is developed and in order to examine reinforcement effect of a panel clearly, the structure performance evaluation experiment was conducted. As a result, we knew that it can check with the naked eye the injection process of adhesives and reinforcement effect was also observable.

  • PDF

Development Strengths of High Strength Headed Bars of RC and SFRC Exterior Beam-Column Joint (RC 및 SFRC 외부 보-기둥 접합부에 대한 고강도 확대머리 철근의 정착강도)

  • Duck-Young Jang;Jae-Won Jeong;Kang-Seok Lee;Seung-Hun Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.94-101
    • /
    • 2023
  • In this study, the development performance of the head bars, which is SD700, was experimentally evaluated at the RC (reinforced concrete) or SFRC (steel fiber reinforced concrete external beam-column joint. A total of 10 specimens were tested, and variables such as steel fibers, length of settlement, effective depth of the beam, and stirrups of the column were planned. As a result of the experiment, the specimens showed side-face blowout, concrete breakout, and shear failure depending on the experimental variables. In the RC series experiments with development length as a variable, it was confirmed that the development strength increased by 26.5~42.2% as the development length increased by 25-80%, which was not proportional to the development length. JD-based experiments with twice the effective depth of beams showed concrete breakout failure, reducing the maximum strength by 31.5% to 62% compared to the reference experiment. The S-series experiment, in which the spacing of the shear reinforcement around the enlarged head reinforcement was 1/2 times that of the reference experiment, increased the maximum strength by 8.4 to 9.7%. The concrete compressive strength of SFRC was evaluated to be 29.3% smaller than the concrete compressive strength of RC, but the development strength of SFRC specimens increased by 7.3% to 12.2%. Accordingly it was confirmed that the development performance of the head bar was greatly improved by reinforcing the steel fiber. Considering the results of 92% and 99% of the experimental maximum strength of the experiment arranged with 92% and 110% of the KDS-based settlement length, it is judged that the safety rate needs to be considered even more. In addition, it is required to present a design formula that considers the effective depth of the beam compared to the development length.

Deduction Equation of Shear Strength of Steel Fiber Reinforced High Strength Concrete Beams (강섬유 보강 고강도 콘크리트 보의 전단강도 추정식(구조 및 재료 \circled2))

  • 조선정;박종건;곽계환
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.253-258
    • /
    • 2000
  • The purpose of this paper is to propose the deduction equation of shear strength of high strength reinforced concrete beams input steel fibrous. To propose the deduction equation of shear strength, we studied high reasonable verification by comparing proposal equation with other researches such as equation of ACI code 318-95 or equation of Zsutty. To propose the deduction equation of shear strength, regression analysis was done using MINITAP program. Finally, it has been tried to make an improvement of brittleness quality of high strength concrete which has been weak points and it is convinced the result by increase of deflection and strain about loads.

  • PDF

Assessments of Creep Properties of Strip Type fiber Reinforcement (띠형 섬유보강재의 크리프 특성 평가)

  • 전한용;유중조;김홍택;김경모;김영윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.279-289
    • /
    • 2003
  • Geosynthetic reinforced earth wall was introduced about 20 years ago and many structures have been constructed. Especially, segmental concrete panel facing and friction tie system are the most popular system in Korea, and this friction tie was composed of high tenacity PET filament and LDPE(Low Density Polyethylene) sheath. Due to the lack of direct-test results, design coefficients of friction tie (creep reduction factor) had been determined by quoting the previous and the foreign reference data. This is an unreasonable fact for the use of friction ties. In this study, the creep tests were performed to evaluate the creep behavior of friction tie, and the reduction factor of creep was calculated for the correct design of geosynthetic reinforced earth retaining walls. From the test results, finally it was found that the allowable creep strength of friction tie is 60% of Tult during service life, and creep reduction factor is 1.67 for each grade of friction ties.

An experimental study on the relationship between SFRC and HSC at long-term response. (고강도 콘크리트와 강섬유 보강 콘크리트의 장기거동 특성에 관한 상관관계 연구)

  • Seo Jong-Myeong;Lee Joo-Ha;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.317-320
    • /
    • 2005
  • In recent years, according to the development of construction technique, the constructions of longer span bridges, taller buildings, deeper offshore structures, and other megastructures are calling for construction materials with increasingly improve properties. So, the demand for high-strength concrete(HSC) have been increased and many new structures have been built using HSC with the compressive strength about 100MPa. However, it is well-known that as the strength of concrete increases, concrete becomes more brittle. Recent studies, however, shown that the brittleness of HSC can be improved by adding some fibers to the concrete. Especially steel fiber reinforced concrete(SFRC) can be used in this case. Many research works have shown that SFRC results in better crack and deflection control, higher shear strength, improved fatigue performance, increased impact strength, reformed flexural strength, advanced fracture toughness and enhanced postcracking resistance. So, this is a study on the long-term response of SFRC applied to HPC about 40MPa. Therefore, in this study, the test results of twenty-six high-strength concrete specimens and steel fiber-reinforced concrete specimens, with steel fiber content of 1 $\%$ by volume were presented. And the results are analyzed by using of the factors of time, mix properties, humidity/temperature, and loading conditions.

  • PDF

A Study on Carbon Fiber Sheet Rehabilitation of High Strength Reinforced Concrete Beams Mixed Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 탄소섬유쉬트 보강에 관한 연구)

  • 곽계환;곽경헌;정태영;고성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.491-496
    • /
    • 2001
  • In recent years, the research and development about the new material proceed rapidly and actively in the building industry. As building structures become bigger, higher and more specialized, so does the demand for material with higher strength. In the future, we will need to research repair and rehabilitation to make high strength concrete mixed steel fibrous building safe. The carbon fiber reinforced plastic bonding method is widely used in reinforcing the existing concrete structure among the various methods. The repair of initiate loaded reinforced high-strength concrete beams mixed steel fibrous with epoxy bonded Carbon Fiber Sheets(CFS) was investigated experimentally. The CFS thickness and length were varied to assess the peel failure at the curtailment of CFS, The behaviour of the repaired beams was represented by load-longitudinal steel strain relation and failure modes were discussed. The test results indicate that CFS is very effective for strengthening the demand beams and controlling deflections of reinforced high strength concrete beams mixed steel fibrous happen diagonal crack, the increase in the number of CFS layers over two layers didn't effect the increase in the strength of beams.

  • PDF

A experimental study on the long-term response of high-strength Steel-Fiber Reinforced Concrete (고강도 강섬유 보강 콘크리트의 장기거동 특성에 관한 실험적 연구)

  • Seo Jong-Myeong;Kim Jae-Ki;Lee Joo-Ha;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.337-340
    • /
    • 2004
  • In recent days, the beneficial effects of using fiber reinforced concrete, especially Steel Fiber Reinforced Concrete, have been on the rise. However, few studies on long-term behavior of SFRC are executed in spite of great demand of SFRC. The fact that SFRC is far better than NRC in various properties such as tensile strength, ductility, flexural toughness has been certified by many researchers. And, those advantages can be also applied to decrease the structures deterioration induced by creep and shrinkage. Furthermore, even though it is fact that SFRC is generally used in joint members to distribute concentrated stresses by fibers, SFRC is treated as NRC in designing especially for long-term behavior of structures. So this paper is about a study on the long-term response of SFRC applied to HPC about 40MPa. Therefore, in this paper, the test results of eighteen high-strength concrete specimens and steel fiber-reinforced concrete specimens, with steel fiber content of $1\%$ by volume were presented. The test result shows that SFRC is advantageous rather than NRC in long-term response.

  • PDF

Properties of Ultra High Performance Fiber Reinforced Cementitious Composites Mixed with Limestone Powder (석회석 미분말을 혼입한 초고성능 섬유보강 시멘트복합재의 특성)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • UHPC has high performance, high strength and excellent mechanical properties. Moreover UHPC(Ultra High Performance Cementitious Composite) has advantage to reduce cross section under the same load compared with other kinds of concrete. But silica fume which is imported from foreign country has a abundant portion in UHPC mixture in comparison with normal concrete. This is one of the main reason to raise the construction cost. Superior mechanical properties of UHPC due to the optimum filling composition can be changed by replacing the very fine ingredient. The purpose of this research is to grasp the characteristic of UHPC which silica fume and silica flour is replaced with limestone powder. This experiment can be divided into three classes according to the kinds of replacement. The compressive strength and flow of all types were measured and microstructure and hydration phenomena for comparing RPC were analyzed by SEM, XRD, NMR method. As a result, the replacement can be considered to be effective by for the decrease of the UHPC structure construction cost and improvement of the fresh UHPC.

Repair and Rehabilitation of Polymer-Steel Fibrous High Strength Concrete Beams (폴리머-강섬유를 혼입한 고강도 콘크리트 보의 보수·보강)

  • Kwak, Kae-Hwan;Kim, Won-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.135-143
    • /
    • 2002
  • This study is to investigate its use by applying stainless steel wire mash reinforcement method of construction, which is newly developed, on the high strength concrete beam mixed with polymer-steel fiber. In this test, it is investigated and observed such as follows: the ultimate load, the initial flexure crack load, the initial diagonal tension crack load, the relation between load and deflection, load-strain relation, and also crack growth and fracture aspect by increasing load. The results of this test are; first, the stainless steel wire showed some useful reinforcement effects in multiplying the steel's resisting force of moment to the tensile force of beam or slab: second, the promoting strength and internal force was made in the process of the integration at the same reaction by using the penetrating polymer-mortar with an excellent durability and physical property. On the basis of this results, because such instances in applying stainless steel wire Mash reinforcement method of construction have been few so far, through the experimental investigation such as this test over and over again, the efficient and useful method must be developed for the practice.

Optimum Mix Proportions of In-fill Slurry for High Performance Steel Fiber Reinforced Cementitious Composite (초고성능 강섬유보강 시멘트 복합체의 충전슬러리 최적배합 도출)

  • Kim, Seung-Won;Park, Cheol-Woo;Kim, Seong-Wook;Cho, Hyun-Myung;Jeon, Sang-Pyo;Ju, Min-Kwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • As political circumstances in oversea countries and Korea varies, the risk of vulnerability from unexpected extreme loading conditions, such as explosions or extreme impacts, also increased. In addition, construction companies in Korea recently have taken chances of overseas expansion to countries where their domestic situations are not in rest. Therefore, the resistance of construction materials for blast or impact loading become taking more consideration from engineering field. This study is a part of the research to develop a high performance fiber reinforced cementitious composite materials with high volume steel fibers and primary purpose of this study is to find an optimum mix proportions of in-fill slurry. In order to accomplish the tasks this study performed experimental investigations on the slurry for consistency, compressive strength, flowability, J-penetration, bleeding and rheology properties as well as mechanical properties, compressive and flexural strength, with respect to different mix proportions.