• 제목/요약/키워드: 섬유배향 함수

검색결과 29건 처리시간 0.032초

화상처리에 의한 섬유배향각 분포측정에 있어서 교차점합산법의 정밀도 (Accuracy of Intersection Counting Method in Measurement of Fiber Orientation Angle Distribution Using Image Processing)

  • 이상동;박준식;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.97-105
    • /
    • 1998
  • The fiber oriented condition inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to meausure the fiber orientation angle for the determination of molding conditions, mechanical characteristics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine the accuracy of intersection counting method. The fiber orientation function measured by intersection counting method using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the scanning line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.

  • PDF

GMT Sheet에서 섬유함유율 및 섬유배향이 인장강도에 미치는 영향 (Effect of Fiber Content and Fiber Orientation on the Tensile Strength in Glass Mat Reinforced Thermoplastic Sheet)

  • 이정주;이동기;심재기;조선형;김진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.186-191
    • /
    • 2004
  • we can say that the increasing range of the value of GMT Sheet's tensile strength in the direction of fiber orientation is getting wider as the fiber content increases. It shows that the value of GMT Sheet's tensile strength in the direction of fiber orientation 90 is similar with the value of pp's intensity when fiber orientation function is J= 0.7, regardless of the fiber content. Tensile strength of GMT Sheet is affected by the fiber orientation distribution more than by the fiber content.

  • PDF

섬유의 배향밀도함수를 이용한 실의 역학적 거동 예측

  • 전붕수
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.418-421
    • /
    • 1998
  • 실의 역학적 특성은 실을 구성하고 있는 섬유의 역학적 특성은 물론 실의 구조적 특성에 의존한다. 실의 구조적 특성은 구성 섬유의 경로에 따라서 결정이 되는데 지금까지는 주로 이상 나선 구조 모델로 가정한 후 실의 역학적 특성을 고찰하여 왔다[1]. 그러나 실제로 꼬임이 있는 실을 방출할 경우 꼬임을 부여하는 과정에서 구성 섬유들 간에 걸리는 장력의 차이에 의하여 섬유들은 실의 외부에서 내부로 또는 내부에서 외부로 이동하게 된다. (중략)

  • PDF

섬유강화 고분자 복합재료에서 섬유배향상태에 따른 기계적 성질 (The Mechanical Property by Fiber Orientation Distributions in Fiber-Reinforced Polymeric Composites)

  • 이동기;심재기;한길영;김혁;김진우;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.202-205
    • /
    • 2003
  • Investigated whether fiber orientation situation of fiber reinforcement macromolecule composition board and the fiber inclusion rate are perpendicular and horizontal direction tensile strength and some correlation. Fiber orientation situation of tensile strength of 0 direction of composition board increased changelessly by aeolotropy in isotropy. Tensile strength of 90 direction that is isotropy and tensile strength of 0 direction that is aeolotropy agreed almost. Get into aeolotropy, the reinforcement rate of fiber decreased. When load interacts for width direction of reinforcement.

  • PDF

FRP의 사출성형에 있어서 섬유배향상태와 섬유함유율분포에 관한 연구 (A Study on the Fiber Orientation and Fiber Content Ratio Distribution during the Injection Molding for FRP)

  • 김진우;이동기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.252-257
    • /
    • 2005
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation' orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line in injection-molded products is assessed. And the effects of fiber content and injection mold-gate conditions on the fiber orientation are also discussed.

  • PDF

섬유강화 플라스틱 복합판의 구조와 분리.배향에 관한 연구 (A study on structure and separation orientation of fiber-reinforced thermoplastic sheet)

  • 이동기;조광현
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.104-113
    • /
    • 1993
  • Characteristics of fiber-reinforced thermoplastic sheet depend on the quantity and shape of fibers. During a molding process of composites, the fiber-maxtrix separation and fober orientation are caused by the flow during the molding process. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation-orientation and molding conditions. The correlation between the separation and the orientation have to be clarified for designing the fiber structure. In this paper, the degree of nonhomogeneity which is a measure of the separation is obtained using one-dimensional rectangular shaped part compression molding. And the orientation function is defined and measured by the image processing using soft X-rayed photograph and image scammer. Correlation between the degree of nonhomogeneity and the orientation function is discussed.

  • PDF

농도법에 의한 GFRP 복합재료의 섬유배향각 분포측정 (Measurement of Fiber Orientation-Angle Distribution of Glass Fiber Reinforced Polymeric Composite Materials by Intensity Method)

  • 김혁;안종윤;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.34-44
    • /
    • 1996
  • In order to examine the accuracy of the intensity method, the fiber orientation-angle distribution of fiber-reinforced polymeric composites is measured using image processing. The fiber orientation function is calculated from the fiber orientation measured by the soft X-ray photograph. Theoretical and experimental results of fiber orientation function are compared for the composites with different fiber contents and fiber orientations. The intensity method is used for the experimental investigation and the measured fiber orientation function is compared to the calculated one. The relations between the measured and the simulated fiber orientation functions $J{\small{M}}$ and $J{\small{S}}$ respectively are identified. For the fiber length of 1.000mm and 2.000mm, it shows that $J{\small{M}}=0.83J{\small{M}}$. However. in general. the value of $J{\small{M}}$ decreases as the fiber length increases. For GFRP composites the relations between $J{\small{M}}$ and theoretical value J show that $J{\small{M}}$=0.73J for short fiber and $J{\small{M}}$=0.81J for long fiber.

  • PDF

Twisted Yarn 복합재료에서 인장강도에 미치는 섬유배향의 영향 (Effect of Fiber Orientation on the Tensile Strength in Twisted Yarn Composites)

  • 이동기;심재기;김혁;김진우;이정주;이하욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.422-425
    • /
    • 2003
  • Investigated whether fiber orientation distribution of twisted yarn composites and the fiber content are 0$^{\circ}$ and 90$^{\circ}$ direction tensile strength and some correlation. Tensile strength of 0$^{\circ}$ directions of twisted yarn composites increased changelessly being proportional the fiber content and fiber orientation function get into anisotropic in isotropic. But, tensile strength ratio by separation of fiber filament of 90$^{\circ}$ directions tensile strength decreased when tensile load is imposed for width direction of reinforcement fiber. 0$^{\circ}$ and 90$^{\circ}$ direction tensile strength ratio value of a twisted yarn composites not receive almost effect of the fiber content of fiber orientation function J = 0.4 lows. Although do, 20 wt% of the fiber content is high about 0$^{\circ}$ and 90$^{\circ}$ direction tensile strength ratio about 1.6~2 than 10 wt% from J = 0.4. Therefore. could know that effect of the fiber content is dominate.

  • PDF

섬유강화 고분자 복합재의 사출성형에 있어서 웰드라인부의 섬유배향측정 (Measurement of the Fiber Orientation on Weld-Line Parts for Injection Molding of Fiber Reinforced Polymeric Composites)

  • 김혁;강명구;최유성;이동기;한길영;김이곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.265-270
    • /
    • 2000
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation· orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line parts in injection-molded products is assessed. And the effects of fiber content and injection molding conditions on the fiber orientation functions are also discussed

  • PDF

섬유배향각 분포측정에 있어서 농도법의 정밀도에 미치는 섬유종횡비와 면적비의 영향 (Effects of Aspect and Area Ratio of Fiber on the Accuracy of Intensity Method in Measurement of Fiber Orientation-Angle Distribution)

  • 이상동;김혁;이동기;한길영;김이곤
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.953-959
    • /
    • 1998
  • To investigate accuracy of intensity method for measurement of the fiber orientation distribution, fiber orientation function is calculated by drawing simulation figures for the fiber orientation as varying fiber aspect ratio, fiber area ratio, and fiber orientation state, respectively. The values of fiber orientation function measured by intensity method are compared with the calculated values of fiber orientation function. The results show that measurement accuracy of the fiber orientation angle distribution by intensity method is affected by the fiber aspect ratio when the total length of oriented fiber is same. The average gradient of fiber orientation function is 0.94 for 1000mm of the total fiber length and is 0.93 for 2000 mm when the fiber aspect ratio is over 50. Measurement accuracy by intensity method is about 94% and the reliable data can be obtained by intensity method.