• Title/Summary/Keyword: 섬유물성

Search Result 979, Processing Time 0.03 seconds

Alkaline Weight Reduction and Physical Properties of 0.01d Polyester Ultramicro Fiber (0.01d 폴리에스테르 초극세 섬유의 알칼리 감량과 물성)

  • Park, Jae-Min;Jeong, Dong-Seok;Rho, Hwan-Kown;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.18 no.4
    • /
    • pp.37-42
    • /
    • 2006
  • Two kinds of sea-island type polyester ultramicro fibers (fiber fineness : 0.01 and 0.05 denier) were treated with NaOH varying time and concentration. Surface morphology of the treated fibers with alkaline weight loss was observed by SEM. The treated effects were investigated by measuring density, melting temperature, and X-ray diffraction patterns. The surface morphology of the polyester ultramicro fiber was changed by NaOH concentration. Weight loss of 0.01d fiber was much larger than that of 0.05d fiber. Density and crystallinity were increased with weight loss of fiber. After the weight loss had finished, the density and crystallinity were decreased because of attack of island partition of the fiber. A melting temperature$(T_m)$ is $250^{circ}$ at untreated fiber on the whole and in 0.05d fiber the $(T_m)$ is $252^{circ}$ at untreated. In 0.01d fiber the $(T_m)$ was increased with weight loss of fiber.

Dyeing Properties of CDP fiber( II ) - Effect of Heat Setting on Dyeing and Physical Properties of CDP Fabric - (CDP 섬유의 염색성(II) - 염색성 및 물성에 미치는 열처리의 영향 -)

  • Shin Woo Young;Jeong Dong Seok;Lee Mun Cheul
    • Textile Coloration and Finishing
    • /
    • v.17 no.3 s.82
    • /
    • pp.8-15
    • /
    • 2005
  • Cationic dyeable polyester(CDP) fabric was annealed at varying temperatures range from $120^{\circ}C$ to $220^{\circ}C$ for 1, 3, and 5 min under tension. Dyeing rates of CDP fabrics were measured with cationic and disperse dyes at $100^{\circ}C$ and $120^{\circ}C$ in water system. Also X-ray diffraction pattern, DSC thermograms and dyeability of fabric with cationic and disperse dyes were investigated. The intensities of X-ray diffraction peaks of annealed fabric were increased with increasing in annealed temperature, and peak became sharp with heat setting temperature. The apparent color depth (K/S) of CDP fabric initially decreased with increase of heat-setting temperature up to $160\~180^{\circ}C$ and then increased at higher temperature. The shearing modulus(G) and surface roughness were increased with annealing temperature.

Development Trend of Composite Materials for Membrane Hosuing (분리막 하우징용 복합소재의 연구개발 동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.14-25
    • /
    • 2016
  • The membrane separation process is growing very fast because of the high efficiency and low cost compared with other traditional process. The membrane process consists of various components such as membrane, module and mechanical part. The requirements for materials used in the membrane separation are becoming more and more demanding for achievement of high efficiency. Membrane module is also considered as the one of the key component in the membrane system. Recently composite materials have been considered as the membrane housing due to their excellent property and low cost compared with stainless module. In this review, a various types of glass fiber and composite material are summarized and their potential for the application of membrane system is discussed.

Extended Unmixing-Mixing Scheme for Prediction of 3D Behavior of Porous Composites (다공성 복합재료의 삼차원 거동 예측을 위한 분리-혼합 기법의 확장)

  • Choi, Hoi Kil;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Pyrolysis and surface recession of charring composites are progressed primarily in the thickness direction. The unmixing-mixing scheme is applied to describe the in-plane and through-thickness behaviors of porous composites. The extended unmixing-mixing equations are based on transverse isotropy of unidirectionally fiber-reinforced composites. The strain components of gas pressure in pores, thermal expansion, and chemical shrinkage are included in the constitutive model. By analyzing micromechanical representative volume elements of porous composites, the validity of the derived equations are examined.

Thermal and Geometrical Effect on the Motor Performance of Composite Squirrel Cage Rotor (복합재료 농형 회전자의 열적, 기하학적 특성이 모터 성능에 미치는 효과)

  • 장승환;이대길
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.77-89
    • /
    • 2001
  • Since the critical whirling vibration frequency of high speed built-in type motor spindle systems is dependent on the rotor mass of the built-in motor and the spindle specific bending modulus, the rotor and the shaft were designed using magnetic powder containing epoxy and high modulus carbon fiber epoxy composite, respectively. In order to increase the amount of the magnetic flux of the composite squirrel cage rotor of an AC induction motor, a steel core was inserted into the composite rotor. From the magnetic analysis, the optimal configurations of steel core and conductor bars for the dynamic characteristics of the rotor system were determined and proposed. The temperature dependence of composite squirrel cage rotor materials was investigated by various experiments such as TMA, DMA and VSM.

  • PDF

Interfacial Evaluation of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) Composites Using Micromechanical Test and Nondestructive Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp 섬유 강화 에폭시 복합재료의 계명 물성 평가)

  • Son, Tran Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.157-160
    • /
    • 2005
  • The surface energies and acid-base interaction between the untreated and treated Jute or Hemp fibers and different matrix compositions of polypropylene-maleic anhydride polypropylene copolymers (PP-MAPP) were investigated using dynamic contact angle measurement. The contribution of the acid-base property into the interfacial adhesion of the natural fibers/matrix systems were characterized by calculating the work adhesion coming from the acid-base interaction. On the other hand, microfailure mechanism of both single Jute and Hemp fiber bundles were investigated using the combination of single fiber tensile test and acoustic emission. Distinctly different micro failure modes of the different natural fiber/polypropylene systems wet ε observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

Study on the Improvement of Epoxy Property for Aluminum Conductor Composite Core (복합재료 중심인장선용 에폭시 물성 개선 연구)

  • Heo, Seok-Bong;Kang, Junyoung;Youn, Young-Gil;Goh, Munju;Kim, Nam Hoon
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.349-354
    • /
    • 2019
  • The Aluminum conductor composite core consists of fast-curing thermosetting epoxy used as reinforcements and carbon fiber and glass fiber used as matrix. In this study, we have investigated fast curing epoxy cured products used for composite core(Aluminum Conductor Composite Core, ACCC). Tetrafunctional epoxy(PA 806) was used as a multifunctional epoxy, along with two kinds of curing agents, MNAn(5-Methyl-5-norbornene-2,3-dicarboxylic anhydride) and HHPA(Hexahydrophthalic Anhydride), to make an epoxy cured product and their properties were evaluated. Optimum conditions are confirmed by varying the content of curing accelerator in the selected epoxy and curing agent.

Optimal Design of Composite Laminated Plates with the Discreteness in Ply Angles and Uncertainty in Material Properties Considered (섬유 배열각의 이산성과 물성치의 불확실성을 고려한 복합재료 적층 평판의 최적 설계)

  • Kim, Tae-Uk;Sin, Hyo-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.369-380
    • /
    • 2001
  • Although extensive efforts have been devoted to the optimal design of composite laminated plates in recent years, some practical issues still need further research. Two of them are: the handling of the ply angle as either continuous or discrete; and that of the uncertainties in material properties, which were treated as continuous and ignored respectively in most researches in the past. In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles and that for thickness optimization which considers uncertainties in material properties are used for a two step optimization of composite laminated plates. In the stacking sequence optimization, the branch and bound method is modified to handle discrete variables; and in the thickness optimization, the convex modeling is used in calculating the failure criterion, given as constraint, to consider the uncertain material properties. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region taken into consideration; and the optimal thickness increases when the uncertainties of elastic moduli considered, which shows such uncertainties should not be ignored for safe and reliable designs.

The Effect of Resin Impregnation Ratio on the Properties of Woodceramics Made from Broussonetia Kazinoki Sieb (수지함침율이 닥나무 우드세라믹의 성질에 미치는 영향)

  • Byeon, Hee-Seop;Kim, Jae-Min;Hwang, Kyo-Ki;Park, Seong-Cheol;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.178-184
    • /
    • 2010
  • This study was carried out to investigate the properties of woodceramics made from woody part of Broussonetia Kazinoki at different impregnation ratios of phenolic resin of 40, 50, 60, 70%. The physical and mechanical properties increased with increasing impregnation ratio. The highest mean values of density, bending strength, Brinell hardness and compressive strength were 0.66 g/$cm^3$, 53 kgf/$cm^2$, 187 kgf/$cm^2$, 126 kgf/$cm^2$, respectively. There were close correlations between density and bending strength, Brinell hardness and compressive strength, and between MOE and MOR.

The Effects of the Cutting Length of Paper Mulberry Bast Fiber on Pulping and Hanji Properties(I) - White bast of Korea grown paper mulberry - (닥나무 인피섬유의 절단장이 펄프화 및 한지의 물성에 미치는 영향(제1보) - 국산 닥 백피의 특성 -)

  • Lim, Gang-Hyouk;Choi, Tae-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.2
    • /
    • pp.57-64
    • /
    • 2008
  • In general, the entire of paper mulberry bark, which is not cut into pieces with an appropriate length, have been used in the pulping. This kind of pulping method couldn't accomplish the improvement of beating and sheet forming efficiency. For this reason, we investigated the effects of the cutting length of paper mulberry bast fiber on pulping and Hanji (Korean traditional paper) properties, in order to develop high quality Hanji manufacturing process. The cutting length variation of paper mulberry white bast did not great effects on pulp yields. The pulp yields based on pulping methods were sulfomethylated pulping av. 57.4%, alkali-hydrogen peroxide pulping av. 55.4%, and alkaline pulping av. 53.5% respectively. The optical properties such as brightness, opacity, scattering coefficient, and absorption coefficient were slightly improved by the increase of paper mulberry white bast cutting length. The increase of paper mulberry white bast cutting length resulted in poor sheet formation. Physical properties such as breaking length, TEA, tear index, burst index, and folding endurance were slightly improved by the increase of cutting length. The modified pulping processes, which used sulfomethylated method and alkali-hydrogen peroxide method, showed better pulp and sheet properties than conventional alkaline pulping.