• Title/Summary/Keyword: 섬유매트

Search Result 141, Processing Time 0.036 seconds

A Study on the Processing of Long Fiber-Reinforced Composite Materials for Thermoforming On the Correlation Coefficient between Separation and Orientation (Thermoforming용 長纖維强化 複合材料의 成形工程에 관한 硏究 分離$\cdot$配向의 相關계수)

  • 이동기;김정락;김상필;이우일;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1106-1114
    • /
    • 1993
  • A composite material is composed of a reinforcement and a matrix, which determine mechanical characteristics of the molded part. There is no doubt that the properties of a composite material depend not only on the characteristics of the matrix but also on the structure of glass fiber mat and a fiber type of reinforcement. Therefore it is very important to study the composites of reinforcement and the matrix, and to control the fiber type in the process of molding of composite materials. In this study, the specimen was made of a glass fiber mat of 6-7mm thickness by scattering it in the air after cutting the glass fiber mat with needle punching makes change according to the type of needle and the number of times of stretching. First the sheet was made by means of a hot-press after accumulating a matrix and a glass fiber according to each mat structure of glass fiber. It was heated the manufactured sheet with the dry oven and molded it a secondary high temperature compression by a 30 ton oilhydraulic press. A definition of a correlation coefficient is showed up during this period and find it out with the relation of the fiber-matrix separation and the fiber orientation. We studied effects of the glass fiber mat structures on the correlation coefficient.

An Experimental Study for Substitutability of Sand Mat with Fiber Mat (Fiber Mat의 Sand Mat 대체가능성평가를 위한 실험적 연구)

  • Lee Song;Jeong Yong-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.225-230
    • /
    • 2005
  • At present, there are several problems related with sand mat which is used as a way to accelerate consolidation settlement, to act like an underground drainage layer and to increase trafficability simultaneously. First of all, the unbalance of the demand and supply of sand is one of the biggest problems, which causes not only price rise but also delay of the term of the total construction work. Secondly, the damage of ecosystem and scenery is triggered by thoughtless sand dredging or mining. So, the need that sand mat should be replaced with a new environmentally friendly material has been increased. Fiber mat may be one of the proper materials that suits the need. Therefore, we intended to compare the drainage properties of sand mat with those of fiber mat by experimental model tests. On the basis of the test results, fiber mat took shorter period of consolidation than sand mat and the amount of settlement in the farmer showed a little bit bigger than in the latter. As a conclusion, the substitutability of sand mat with fiber mat could be placed highly in view of drainage efficiency. Furthermore, when fiber mat is used, it has an advantage that spoiled soil of the construction site or nearby site can be used for the purpose of increasing trafficability in addition to a role of drainage layer.

Fabrication of a Nano/Microfiber Hybrid Mat for Control of Mechanical Properties and Porosity (기계적 특성 및 공극률 조절을 위한 나노/마이크로섬유 하이브리드 매트 제작)

  • Kim, Jeong Hwa;Jeong, Young Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.41-48
    • /
    • 2017
  • Fine polymeric fibers have been gaining interest from the energy harvesting/storage, tissue, and bioengineering industries because of advantages such as the small diameter, high porosity, permeability, and similarities to a natural extracellular matrix. Electrospinning is one of the most popular methods used to fabricate polymeric fibers because it is not as limited in regards to the materials selection, and it does not require expensive or complex equipment. However, electrospun fibers have a severe aerodynamic instability because the small diameter fibers are able to pass through the atmospheric layer when there is a high electric field. As a result, electrospun fibrous mats have serious difficulties with controlling its shape and geometric properties. In this study, a hybrid nano/microfibrous mat is presented that is fabricated using electrospinning with two different solvent-based PCL solutions. This provides control of the fiber diameter, mat porosity, and mechanical properties. Various hybrid fibrous mats were fabricated after an experimental investigation of the effects of solvent on fiber diameter. It was then demonstrated that the mechanical properties and porosity of the fabricated various hybrid mats could be successfully controlled.

Fundamental Properties of Electrospun Polylactic Acid/Cellulose Nanocrystal Composite Mats (전기방사를 이용한 PLA/CNC 복합 매트의 기초 특성)

  • Jo, Yu-Jeong;Lee, Sun-Young;Chun, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.518-527
    • /
    • 2015
  • In this study, nanocomposite mats consisting of cellulose nanocrystals (CNCs) and poly(lactic acide) (PLA) were electrospun from a suspension mixture consisting of tetrahydrofuran at room temperature. Morphology study showed that fibers of electrospun composite mats were aligned in three dimensional surface along the fiber long-axis. Average diameter of the electrospun fibers decreased with an increase in the CNC loading level. Tensile strength of the electrospun fibers mat decreased with an increase in the CNC loading level because of bead formation in the formed fibers and low interfacial bond strength between PLA and CNC. Meanwhile, thermal stability of the electrospun nanocomposite mats was effectively improved as the amount of CNC increased.

The Effect of Geosynthetic Mulching Mat on Surficial Soil Slope Stabilization (토목섬유 식생매트를 이용한 흙사면의 포토안정화)

  • 안태봉;조삼덕;한운우
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.51-58
    • /
    • 2001
  • 본 연구에서는 종자와 비료, 부직포 지오텍스타일, 마 네트로 구성된 토목섬유 식생매트 시스템을 개발하였다. 개발된 식생매트를 흙 사면에 설치한 결과 사면의 식생성장과 사면안정에 긍정적인 효과를 얻었으며 이것은 실물시험을 통하여 강우와 사면에서의 유출수량, 부유물질, 토사침식량 등을 8개의 시험구에 식생매트를 분석하였다. 유출수량은 모든 시험구에서 강우량이 클수록 증가하였으며 식생매트를 설치한 곳이 안한 곳보다 유출수량이 작았으며 총부유물질은 유출수량에 크게 영향을 받는다. 식생매트는 흙 침식과 부유물질의 이동을 감소시켜 흙사면의 안정에 매우 유익하다. 또한 식생성장환경을 개선하며 특히 가뭄시에 성장에 매우 효과적이다.

  • PDF

Seam Tensile Strength of Geotextile Mat and Stress Increment Analysis (지오텍스타일 봉합 인장강도와 지반의 응력증가분 해석)

  • Chae, Yu-Mi;Kim, Jae-Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.73-79
    • /
    • 2018
  • In the west coast, south coast, and river basin, the use of geotextile mats has been increasing to improve the soft ground for making industrial facilities space and farmland. As an initial step to improve the vast and soft ground, the geotextile mats are laid and bonded to increase the bearing capacity of the wide ground for supporting construction equipment. Seam strength of geotextile mats exert a force only about 50% of the tensile strength of the fabric, which causes problems such as uplift and sinking in the soft ground. In this study, various types of geosynthetic matting techniques were investigated and the tensile strength of each method was compared and analyzed. Numerical analysis shows that stress increment in the ground due to the overburden load decreases when the seam strength of the geosynthetics mats is increased. When the seam strength was increased to 60, 70 and 80%, the bearing capacity of ground by geotextile mat was increased.

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

Effect of Fiber Orientation on Ionic Conductivity of Electrospun Polyimide Nanofibers Mats (전기방사 폴리이미드 나노섬유매트의 섬유배향이 이온전도도에 미치는 영향)

  • Huh, Yang-Il;Kim, Young-Hee;Ahn, Jou-Hyeon;Lee, Hong-Ki;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.40-43
    • /
    • 2010
  • In this study, polyimide(PI) nanofibers mats were prepared by electrospinning and three different fiber morphologies of random, uniaxial, and biaxial orientation were prepared by controlling the speed of drum-shaped collector and other parameters. The SEM studies reveal that the aforesaid morphologies were obtained on the nano-fibrous mats prepared. The ionic conductivity was measured using an in-plane type conductivity tester for the PI mats soaked in the mixture of 1M lithium trifluoro-methane-sulfonate and tetra-ethylene glycol dimethyl ether. The ionic conductivity was surprisingly higher for the biaxial PI mats. For the uniaxially-oriented mats, the ionic conductivity was found to be higher in the parallel direction compared to the perpendicular direction of the fiber orientation. A curious cyclic fluctuation was found in the ionic conductivity with time. The observed behavior was explained by considering the distance between fibers and transport speed of ions used in this study.

Fiber Mat Catalytic Burners for Drying Processes of Textile Coating (섬유 코팅 건조기를 위한 파이버매트 촉매버너)

  • 서용석;류인수;류민웅;조성준;송광섭;강성규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.10a
    • /
    • pp.174-179
    • /
    • 1998
  • 본 연구는 섬유 코팅 건조기에서 사용하고 있는 열풍 건조방식을 촉매버너를 이용한 직접 건조 방식으로 대체하기 위한 것이다. 촉매버너는 파이버 매트를 사용한 확산식 연소 방식을 채택하였다. 확산식 촉매버너는 코팅 건조기와 같은 밀폐형 구조에는 적합하지 않아서 개선이 필요한 것으로 나타났다. 연소용 공기를 촉매버너의 표면에 강제적으로 공급하여 촉매버너의 연소효율을 개선하였다. 아크릴이 코팅된 섬유의 건조 과정에서 발생하는 톨루엔을 회수하여 촉매버너의 연료로 재사용하도록 하였다. 이를 위하여 톨루엔을 사용한 경우의 촉매버너의 최적 설계조건을 도출하였다.

  • PDF

Case History of Sea Dyke Construction Using Geotextile Mat (토목섬유매트를 활용한 호안축조공사 사례 연구)

  • Park, Jeong-Jun;Kim, Sung-Hwan;Shin, Eun-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.7-13
    • /
    • 2008
  • Geosynthetic damage has attracted a major attention since the introduction of geotextiles for civil construction applications. Geotextile is one of the most useful and effective polymer material in civil construction works and the main function of geotextile is separation, reinforcement, filtering and drainage. Recently, because of the shortage of natural rock, traditional forms of river and coastal structures have become very expensive to build and maintain. This study tries to suggest the method of estimating valid stitching rate and the methodology of sea dyke construction over soft soils for more reasonable application of geotextile mat by studying tensile strength, bursting strength, punching strength, tear strength that are considered when analyzing and designing geotextile mat of a field.

  • PDF