• Title/Summary/Keyword: 섬아연석

Search Result 115, Processing Time 0.022 seconds

Gold and Silver Mineralization of the Soowang Ore Deposits in Muju, Korea (무주 수왕광상의 금-은 광화작용)

  • Park, Hee-In;Youn, Seok-Tai
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.484-494
    • /
    • 2004
  • The Soowang Au-Ag deposits occur as quartz veins which filled fissures in middle Cretaceous porphyritic granite an/or gneiss of the Precambrian Sobaegsan gneiss complex. The paragenetic studies suggest that vein filling can be divided into four identifiable stages (I to IV). Stage I is the main sulfide stage, characterized by the deposition of base-metal sulfide and minor electrum. Stage II is the electrum stage, whereas stage III represents a period of the deposition of silver-bearing sulfosalts and minor electrum. Stage IV is the post ore stage. Mineralogical and fluid inclusion evidences suggest that mineralization of the Soowang deposits were deposited by the cooling of the fluids from initial high temperatures 300$^{\circ}C$ to later low temperatures 150$^{\circ}C$. The salinity of the fluids were moderate, ranging from 10.4wt.% equivalent NaCl in sphalerite to 3.1wt.% equivalent NaCl in barite. The gold-silver mineralization of the Soowang mine occurred at temperatures between 140 and 250$^{\circ}C$ from fluids with log $fs_2$ from -12 to -18 atm. A consideration of the pressure regime during ore deposition, based on the fluid inclusion evidence of boiling, suggests lithostatic pressure of less than 210 bars. This pressure condition indicates that vein system of the Soowang deposit formed at depth around 800 m below the surface at the time of gold-silver mineralization.

Mode of Occurrences and Depositional Conditions of Arsenopyrite from the Yeonhwa 1 Mine, Korea (연화 제1광산에서의 유비철석의 산상과 배태 조건)

  • Lee, Young-Up;Chung, Jae-Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • The chemical composition of the arsenopyrite Ib adjoining“triple mutual contact”arsenopyrite + pyrite + hexagonal pyrrhotite may serve as a useful geothermometer in Stage II. In this study it corresponds to temperature T=33$0^{\circ}C$ and f( $S_2$)=10$^{-9.5}$ atm. And the pyrite-hexagonal pyrrhotite buffer curve indicates the probable range of the two variables; T= 315∼345$^{\circ}C$, and f( $S_2$)=10$^{-1}$0.5/∼10$^{-9}$ atm. The present antimony-bearing arsenopyrite (arsenopyrite Ic) is characterized by relatively high content of antimony, ranging from 4.95 to 8.91 percent Sb by weight and excess of iron and deficiency of anions are evident. Such a high antimonian arsenopyrite has never been known within single grain. But being the high content of antimony as in the arsenopyrite Ic, it does not serve as a geothermometer. The results of microprobe analyses for four pairs of asenopyrite and sphalerite in Stage III indicate the temperature range from 310 to 34$0^{\circ}C$, and sulphur fugacity range from 10$^{-10}$ ∼10$^{-9}$ atm. These values seem to correspond with those inferred from the Fe-As-S system.m..

Geochemical Studies of Hydrothermal Gold Deposits, Republic of Korea : Yangpyeong-Weonju Area (한반도 열수 금광상의 지화학적 연구 : 양평-원주지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Lee, Kyeong-Yong;Shelton, Kevin L.
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 1989
  • Electrum-galena-sphalerite mineralization of the Yangpyeong-Weonju Au-Ag area was deposited in three stages of quartz and calcite veins which fill fault breccia zones. Fluid inclusion and stable isotope data show that ore mineralization was deposited at temperatures between $260^{\circ}C$ and $180^{\circ}C$ from fluids with salinities between 8.9 and 2.9 equivalent weight percent NaCl. Evidence of boiling indicates pressures of <50 bars, corresponding to depths of 220 to 550 m, respectively, assuming lithostatic and hydrostatic loads. Au-Ag deposition was likely a result of bolling coupled with cooling. Within stages I and II there is an apparent increase in ${\delta}^{34}S$ values of $H_2S$ with paragenetic time ; early -1.4~2.7‰ to later 6.6-9.2‰. The progressively heavier $H_2S$ values can be generated through isotopic re-equilibration in the ore fluid following removal of $H_2S$ by boiling or precipitation of sulfides. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Comparison of these values with those of other Korean Au-Ag deposits reveals a relationship between depth and degree of water-rock interaction. All investigated Korean Jurassic and Cretaceous gold-silver-bearing deposits have fluids which are dominantly evolved, meteoric water, but on1y deeper systems (${\geq}1.25km$) are exclusively gold-rich.

  • PDF

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

Geochemistry and Genesis of Hydrothermal Cu Deposits in the Gyeongsang Basin, Korea : Hwacheon-ri Mineralized Area (경상분지내 열수동광상의 지화학 및 성인연구 : 화천리지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.337-350
    • /
    • 1995
  • The Hwacheon-ri mineralized area is located within the Cretaceous Gyeongsang Basin of the Korean peninsula. The mineralized area includes the Hwacheon, Daeweon, Kuryong and Cheongryong mines. Each of these mines occurs along copper-bearing hydrothermal quartz veins that crosscut late Cretaceous volcanic rocks, although some disseminated ores in host rocks also exist locally. Mineralization can be separated into three distinct stages (I, II, and III) which developed along preexisting fracture zones. Stage I is ore-bearing, whereas stages II and III are barren. The main phase of ore mineralization, stage I, can be classified into three substages (Ia, Ib and Ic) based on ore mineral assemblages and textures. Substage Ia is characterized by pyrite-arsenopyrite-molybdenite-pyrrhotite assemblage and is most common at the Hwacheon deposit. Substage Ib is represented by main precipitation of Cu, Zn, and Pb minerals. Substage Ic is characteristic of hematite occurrence and is shown only at the Kuryong and Cheongryong deposits. Some differences in the ore mineralization at each mine in the area suggest that the evolution of hydrothermal fluids in the area varied in space (both vertically and horizontally) with respect to igneous rocks relating the ore mineralization. Fluid inclusion data show that stage I ore mineralization mainly occurred at temperatures between ${\approx}350^{\circ}$ and ${\approx}200^{\circ}C$ from fluids with salinities between 9.2 and 0.5 wt.% eq. NaCl. In the waning period of substage Ia, the high temperature and salinity fluid gave way to progressively cooler, more dilute fluids of later substage Ib and Ic (down to $200^{\circ}C$, 0 wt.% NaCl). There is a systematic decrease in the calculated ${\delta}^{18}O_{H2O}$ values with paragenetic time in the Hwacheon-ri hydrothermal system from values of ${\approx}2.7$‰ for substage Ia, through ${\approx}-2.8$‰ for substage Ib, to ${\approx}-9.9$‰ for substage Ic. The ${\delta}D$ values of fluid inclusion water also decrease with decreasing temperature (except for the Daeweon deposit) from -62‰ (substage Ia) to -80‰ (substage Ic and stage III). These trends are interpreted to indicate the progressive cooler, more oxidizing unexchanged meteoric water inundation of an initial hydrothermal system which is composed of highly exchanged meteoric water. Equilibrium thermodynamic interpretation of the mineral assemblages with the variation in amounts of chalcopyrite through the paragenetic time, and the evolution of the Hwacheon-ri hydrothermal fluids indicate that the solubility of copper chloride complexes in the hydrothermal system was mainly controlled by the variation of temperature and $fo_2$ conditions.

  • PDF