• Title/Summary/Keyword: 섬광체 특성

Search Result 64, Processing Time 0.023 seconds

Recovery of C-14 in the Cement Waste Form (농축폐액 시멘트 고화체로부터 C-14 회수 특성)

  • Ahn Hong-Joo;;Lee Jeong-Jin;Pyo Hyung-Yeal;Han Sun-Ho;Jee Kwang-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.284-289
    • /
    • 2005
  • According to the nuclear safety regulation policy including the administration of radionuclides in low level radwastes, the evaporator bottoms were mixed with cement to form a stable solidification for identifying the recovery possibility of the C-14. The chemical oxidation method was applied for the extraction of C-14 from the cement waste form. The emitting beta ray of the C-14 extracted from the radwastes was measured with the liquid scintillation counter and calculated by using the quenching correction curves. Only the beta emitting radioactive nuclides of the C-14 in the radwastes was showed the radioactivities with the range of $2.7E+00\;{\sim}\;3.07E+02$ Bq/g.

  • PDF

A Study on the Energy and Time Characteristics of $BaF_2$ Scintillation Detector ($BaF_2$ 검출기의 시간과 에너지 특성연구)

  • Ju, Gwan-Sik;Park, Il-Jin;Kim, Jong-Ho;Nam, Gi-Yong;Baek, Seung-Hwa
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.267-272
    • /
    • 1997
  • he scintillation detector having $BaF^2$ crystal with 3.6cm dia${\times}$2.0 cm thick was provided. The energy and timing characteristics were measured and compared with NaI(Tl) scintillation detectors, which widely used in unclear medicine. In order to measure the energy spectrum, the radioactive sources used were $^{22}Na,\;^{54}Mn,\;^{57}Co,\;^{137}Cs$ and the source to detector distance was 7cm. For the timing characteristic, NaI(Tl)(1" ${\times}$ 1")-$BaF^2$ and NaI(Tl)(3" ${\times}$ 3")-$BaF^2$ timing coincidence systems were prepared and the used source was $^{22}Na$ emitting 511keV annihilation photons. For the 511keV gamma-ray emitted from $^{22}Na$, It was revealed that the timing response of the $BaF^2$ detector was faster than NaI(Tl)(1" ${\times}$ 1") and NaI(Tl)(3" ${\times}$ 3") detector used in this experimental investigation. The energy characteristics of the $BaF^2$ detector had a good values for about 500keV energy range.

  • PDF

A Computer Simulation for Small Animal Iodine-125 SPECT Development (소동물 Iodine-125 SPECT 개발을 위한 컴퓨터 시뮬레이션)

  • Jung, Jin-Ho;Choi, Yong;Chung, Yong-Hyun;Song, Tae-Yong;Jeong, Myung-Hwan;Hong, Key-Jo;Min, Byung-Jun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.74-84
    • /
    • 2004
  • Purpose: Since I-125 emits low energy (27-35 keV) radiation, thinner crystal and collimator could be employed and, hence, it is favorable to obtain high quality images. The purpose of this study was to derive the optimized parameters of I-125 SPECT using a new simulation tool, GATE (Geant4 Application for Tomographic Emission). Materials and Methods: To validate the simulation method, gamma camera developed by Weisenberger et al. was modeled. Nal(T1) plate crystal was used and its thickness was determined by calculating detection efficiency. Spatial resolution and sensitivity curves were estimated by changing variable parameters for parallel-hole and pinhole collimator. Peformances of I-125 SPECT equipped with the optimal collimator were also estimated. Results: in the validation study, simulations were found to agree well with experimental measurements in spatial resolution (4%) and sensitivity (3%). In order to acquire 98% gamma ray detection efficiency, Nal(T1) thickness was determined to be 1 mm. Hole diameter (mm), length (mm) and shape were chosen to be 0.2:5:square and 0.5:10:hexagonal for high resolution (HR) and general purpose (GP) parallel-hole collimator, respectively. Hole diameter, channel height and acceptance angle of pinhole (PH) collimator were determined to be 0.25 mm, 0.1 mm and 90 degree. The spatial resolutions of reconstructed image of the I-125 SPECT employing HR:GP:PH were 1.2:1.7:0.8 mm. The sensitivities of HR:GP:PH were 39.7:71.9:5.5 cps/MBq. Conclusion: The optimal crystal and collimator parameters for I-125 Imaging were derived by simulation using GATE. The results indicate that excellent resolution and sensitivity imaging is feasible using I-125 SPECT.

Development of Imaging Gamma Probe Using the Position Sensitive PMTube (위치 민감형 광전자증배관을 이용한 영상용 감마프로브의 개발)

  • Bong, Jeong-Gyun;Kim, Hui-Jung;So, Su-Gil;Kim, Han-Myeong;Lee, Jong-Du;Gwon, Su-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.107-113
    • /
    • 1999
  • The purpose of this study was to develop a miniature imaging gamma probe with high performance that can detect small or residual tumors after surgery. Gamma probe detector system consists of NaI(Tl) scintillator, position sensitive photomultiplier tube (PSPMT), and collimator. PSPMT was optically coupled with 6.5 mm thick, 7.62 cm diameter of NaI(Tl) crystal and supplied with -1000V for high voltage. Parallel hexagonal hole collimator was manufactured for characteristics of 40-mm hole length, 1.3-mm hole diameter, and 0.22 mm septal thickness. Electronics consist of position and trigger signal readout systems. Position signals were obtained with summing, subtracting, and dividing circuit using preamplifer and amplifier. Trigger signals were obtained using summing amplifier, constant fraction discriminator, and gate and delay generator module with preamplifer. Data acquisition and processing were performed by Gamma-PF interface board inserted into pentium PC and PIP software. For imaging studies, flood and slit mask images were acquired using a point source. Two hole phantom images were also acquired with collimator. Intrinsic and system spatial resolutions were measured as 3.97 mm and 5.97 mm, respectively. In conclusion, Miniature gamma probe images based on the PSPMT showed good image quality, we conclude that the miniature imaging gamma probe was successfully developed and good image data were obtained. However, further studies will be required to optimize imaging characteristics.

  • PDF