• 제목/요약/키워드: 설명변수

검색결과 2,598건 처리시간 0.027초

회귀분석에서 설명변수와 반응변수 간의 시차를 파악하는 딥러닝 모델 (A Deep Learning Model for Identifying The Time Lag Between Explanatory Variables and Response Variable in Regression Analysis)

  • 김채현;류의림;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.868-871
    • /
    • 2021
  • 기후, 경영, 경제 등 여러 분야의 회귀분석에서 설명변수가 반응변수에 일정 시차를 두고 영향을 미치는 경우들이 많다. 하지만 지금까지 대부분의 회귀분석은 설명변수가 반응변수에 즉각적으로 영향을 미치는 경우만을 가정하고 있으며, 설명변수와 반응변수 간에 존재하는 시차를 탐색하는 연구는 거의 이루어지지 않았다. 그러나 보다 정확한 회귀분석을 위해서는 설명변수와 반응변수 간에 존재하는 시차를 파악하는 것이 중요하다. 본 논문은 회귀분석 데이터가 주어졌을 때 설명변수와 반응변수 간에 존재하는 시차를 파악하는 딥러닝 모델을 제안한다. 제안하는 딥러닝 모델은 설명변수의 과거 값들 중 어떤 값이 현재 반응변수에 가장 큰 영향을 미치는지를 노드 간 가중치로 표현하고, 회귀모델의 오차를 최소화하는 가중치를 탐색한다. 훈련이 끝나면 이 가중치들을 사용하여 각 설명변수와 반응변수 간에 존재하는 시차를 파악한다. 실험을 통해 제안 방법은 시차를 고려하지 않는 기존 회귀모델에 비해 시차까지 고려함으로써 오차가 1/100 수준에 불과한 더 정확한 회귀모델을 찾을 수 있음을 확인하였다.

존 데이터 기반 수단분담모형에 관한 연구 (A Study on the Modal Split Model Using Zonal Data)

  • 류시균;노정현;김지은
    • 대한교통학회지
    • /
    • 제30권1호
    • /
    • pp.113-123
    • /
    • 2012
  • 본 연구에서는 수단별 비용변수를 주요 설명변수로 활용하고 있는 현행 수단분담모형의 문제점으로서 설명변수간 높은 상관관계로 인한 다중공선성 문제와 버스노선의 가변성으로 인한 설명변수의 장래치 추정불가능성 문제를 지적하고 이와 같은 문제점을 극복할 수 있는 방안으로서 존을 설명하는 사회경제적 변수, 토지이용변수, 교통체계변수들을 설명변수로 하는 '존 데이터 기반 수단분담모형'의 활용가능성을 검증하였다. 장래교통수요추정모형으로서 수단분담모형의 설명변수가 갖추어야 할 조건으로서 목표연도별 설명변수의 추정가능성을 설정하고 이러한 조건을 만족하는 존 데이터를 설명변수로 한 수단분담모형을 구축하였으며 수단별 비용변수를 주요 설명변수로 하는 수단분담모형과의 비교를 수행하였다. 추정된 계수에 대한 통계적 유의성 검정에서 비용변수간 높은 상관관계로 인한 다중공선성 문제를 확인할 수 있었으며 적합도 평가(우도비의 비교)를 통해서 존 데이터 기반 수단분담모형이 수단별 비용변수를 설명변수로 한 수단분담모형에 비해서 설명력이 더욱 높다는 사실이 확인되었다.

포아송 모형에서의 설명변수 선택문제 - 정규분포 설명변수하에서 - (Subset Selection in the Poisson Models - A Normal Predictors case -)

  • 박종선
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.247-255
    • /
    • 1998
  • 일반선형 모형의 하나인 포아송모형에서 설명변수들을 선택하는 문제를 고려하여 보았다 설명변수들이 정규분포를 따르는 확률변수일 때 반응변수의 조건부 분포를 통하여 모형에 필요한 설명변수의 부분집합을 선택하는 방범을 제시하였다.

  • PDF

생명보험사의 개인연금 보험예측 사례를 통해서 본 의사결정나무 분석의 설명변수 축소에 관한 비교 연구 (A study on the comparison of descriptive variables reduction methods in decision tree induction: A case of prediction models of pension insurance in life insurance company)

  • 이용구;허준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권1호
    • /
    • pp.179-190
    • /
    • 2009
  • 금융 산업에서, 의사결정나무 분석은 분류분석을 위해서 널리 사용되는 분석기법이다. 그러나 금융 산업에서 실제로 의사결정나무 분석을 적용할 때, 발생하는 문제점 중 하나는 설명변수의 수가 너무 많다는 점이다. 따라서 모형의 결과에 별 영향을 미치지 않으면서 설명변수의 수를 줄이는 효과적인 방법을 연구할 필요가 있다. 본 연구에서는 의사결정 나무 분석에서 모형의 정확성에 근거한 최선의 변수 선택 방법을 구하기 위하여 다양한 변수 선택방법들을 비교 분석 하였다. 이를 위하여 본 연구에서는 한 보험회사의 연금 보험 상품 자료에 다양한 설명변수 축소방법을 적용하여, 가장 적은 수의 설명변수를 가지고 가장 높은 정확도를 제공하여 주는 설명변수 축소방법을 구하는 실증적인 연구를 시행하였다. 이러한 실험결과, 신경망의 민감도 분석을 이용하여 변수를 축소하고, 그 축소된 변수를 이용하여 의사결정나무 분석 모델을 생성하는 경우가 가장 효율적인 설명변수 축소방법임을 알 수 있었다.

  • PDF

벌점함수를 이용한 부분최소제곱 회귀모형에서의 변수선택 (Variable Selection in PLS Regression with Penalty Function)

  • 박종선;문규종
    • Communications for Statistical Applications and Methods
    • /
    • 제15권4호
    • /
    • pp.633-642
    • /
    • 2008
  • 본 논문에서는 반응변수가 하나 이상이고 설명변수들의 수가 관측치에 비하여 상대적으로 많은 경우에 널리 사용되는 부분최소제곱회귀모형에 벌점함수를 적용하여 모형에 필요한 설명변수들을 선택하는 문제를 고려하였다. 모형에 필요한 설명변수들은 각각의 잠재변수들에 대한 최적해 문제에 벌점함수를 추가한 후 모의담금질을 이용하여 선택하였다. 실제 자료에 대한 적용 결과 모형의 설명력 및 예측력을 크게 떨어뜨리지 않으면서 필요없는 변수들을 효과적으로 제거하는 것으로 나타나 부분최소제곱회귀모형에서 최적인 설명변수들의 부분집합을 선택하는데 적용될 수 있을 것이다.

조건부 상호정보를 이용한 분류분석에서의 변수선택 (Efficient variable selection method using conditional mutual information)

  • 안치경;김동욱
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권5호
    • /
    • pp.1079-1094
    • /
    • 2014
  • 상호정보 (mutual information)를 이용한 변수 선택법은 반응변수와 설명변수간의 선형적인 연관성뿐만 아니라 비선형적인 연관성을 감지하며, 설명변수 사이의 연관성도 고려하는 좋은 변수선택 방법이다. 하지만 고차원 자료에서 상호정보를 추정하기가 쉽지 않아 이에 대한 연구가 필요하다. Cai 등 (2009)은 조건부 상호정보를 이용한 전진선택법과 가지치기법을 이용하여 이러한 문제를 해결하였으며, 마이크로어레이 자료와 같은 고차원 자료에서 조건부 상호정보를 이용한 변수 선택법으로 선택된 변수들로 구성된 SVM의 분류 성능이 SVM-RFE 및 기존의 필터링 방법으로 선택된 변수들로 구성된 SVM의 분류 성능보다 뛰어남을 보였다. 하지만 조건부 상호정보를 추정할 때 사용된 Parzen window 방법은 변수의 수가 많아질수록 변수 선택 시간이 길어지는 단점으로 인해 이에 대한 보완이 필요하다. 본 논문에서는 조건부 상호정보 계산 시 필요한 설명변수의 분포를 다변량 정규분포로 가정함으로써 변수선택을 위한 계산시간을 단축시키며 동시에 변수선택의 성능을 향상시키고자 한다. 반면, 설명변수의 분포를 다변량 정규분포로 가정한다는 것은 강한 제약이 될 수 있으므로 이를 완화시킨 Edgeworth 근사를 이용한 조건부 상호정보 기반의 변수 선택법을 제안한다. 실증분석을 통해 본 논문에서 제안한 방법의 효율성을 살펴보았으며, 기존의 조건부 상호정보 기반 변수 선택법에 비해 계산 속도나 분류 성능 면에서 우수함을 보였다.

SAMPLE-SPACING 방법에 의한 상호정보의 추정 (Sample-spacing Approach for the Estimation of Mutual Information)

  • 허문열;차운옥
    • 응용통계연구
    • /
    • 제21권2호
    • /
    • pp.301-312
    • /
    • 2008
  • 상호정보(mutual information: MI)는 설명변수의 목적변수에 대한 예측정도를 나타내는 척도로서, 목적변수에 대한 설명 변수의 중요도 순위를 구하거나 목적 변수를 잘 설명해주는 설명변수의 집합을 구하는 변수선택문제에 유용하게 사용된다. 본 논문에서는 연속형 설명변수와 범주형 목적변수로 구성된 데이터로부터 결합확률분포를 추정하지 않고도 MI 추정량을 구할 수 있는 Sample-spacing 방법에 대한 연구를 수행하였다. 몬테 칼로 모의 실험과 실제데이터에 대한 실험결과, MI 추정을 위해 Sample-spacing 방법을 사용할 때 m = 1을 사용하면 충분히 신뢰할만한 결과를 얻을 수 있다는 것을 알 수 있었다.

로짓모형에 있어서 다중공선성의 영향에 관한 연구 (Effects of Multicollinearity in Logit Model)

  • 류시균
    • 대한교통학회지
    • /
    • 제26권1호
    • /
    • pp.113-126
    • /
    • 2008
  • 비확률변수간 선형관계로 정의되는 다중공선성은 설명변수간 선형방정식으로 표현되는 회귀모형의 신뢰도를 저하시키기 때문에 회귀모형의 구축과정에서는 세심한 검토와 대응이 이루어진다. 본 연구에서는 구조화된 수치실험을 통해서 로짓모형에 대한 다중공선성의 영향을 규명하였다. 효용함수를 구성하는 설명변수들간 상관관계의 정도에 따라서 추정된 모형의 적합도 지표와 계수의 신뢰도 지표가 어떻게 변동하는 지를 추적함으로써 다음과 같은 시사점을 확인할 수 있었다. 첫째, 설명변수의 추가를 통해서 모델의 적합도 개선이 가능한 회귀모형과 달리, 로짓모형에서는 효용함수에 설명변수를 추가하는 경우 로짓모형의 적합도가 개선될 수도, 역으로 저하될 수도 있음이 확인되었다. 둘째, 공통의 계수를 갖도록 모델을 구성하면 제네릭 변수간 상관관계가 높아짐에 따라 모델의 적합도가 저하됨을 확인하였다. 셋째, 설명 변수간 상관관계가 높은 경우 선택행동에 대한 설명변수의 기여도가 과대평가될 가능성을 확인하였다. 넷째, 설명변수간 상관관계가 높으면 추정된 계수의 신뢰도가 저하됨을 확인하였다. 결론적으로 본 연구를 통해서 그동안 로짓모형의 구축과정에서는 주목받지 못했던 다중공선성이 실제로는 세심한 배려와 적절한 대응을 통해서 제어되어야 함이 규명되었다.

회귀분성에서의 3차원 편잔차그림

  • 강명욱;이정아
    • 응용통계연구
    • /
    • 제13권1호
    • /
    • pp.133-143
    • /
    • 2000
  • 비선형성이 존재하는 두 개의 설명변수가 모형에 선형으로 포함되는 경우 두 설명변수가 연관성이 약하면 각각의 변수에 대한 2차원 편잔차 그림이 비선형성의 존재와 형태를 잘 나타낸다. 그러나 두 변수가 연관성이 강하면 3차원 편잔차 그림이 필요하며 2차원 편잔차 그림으로는 알아낼 수 없는 비선형성에 대한 탐지가 가능하다.

  • PDF

깁스표본기법을 이용한 설명변수 선택문제에서 사전분포의 설정-선형회귀모형을 중심으로-

  • 박종선;남궁평;한숙영
    • Communications for Statistical Applications and Methods
    • /
    • 제4권2호
    • /
    • pp.333-343
    • /
    • 1997
  • 선형회귀분석에서 변수의 선택문제는 최적의 모형을 찾는데 아주 중요한 부분을 차지한다. George와 McCulloch(1993)는 계층적 베이즈 모형과 깁스표본법을 이용하여 선형회귀모형에서 변수를 선택하는 문제를 고려하였다. 이 논문에서는 George와 McCulloch의 모형을 바탕으로 각각의 설명변수가 모형에 포함될 사전확률을 객관적인 기준에 의하여 결정하는 문제를 고려하여 보았다.

  • PDF