• Title/Summary/Keyword: 설명가능한 인공지능

Search Result 110, Processing Time 0.029 seconds

Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology (설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.801-813
    • /
    • 2023
  • Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.

Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM (BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.339-346
    • /
    • 2022
  • Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).

A Stock trend Prediction based on Explainable Artificial Intelligence (설명 가능 인공지능 기법을 활용한 주가 전망 예측)

  • Kim, Ji Hyun;Lee, Yeon Su;Jung, Su Min;Jo, Seol A;Ahn, Jeong Eun;Kim, Hyun Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.797-800
    • /
    • 2021
  • 인공지능을 활용한 주가 예측 모형을 실제 금융 서비스에 도입한 사례가 많아지고 있다. 주식 데이터는 일반적인 시계열 데이터와 다르게 예측을 어렵게 하는 복합적인 요소가 존재하며 주식은 리스크가 큰 자산 상품 중 하나이다. 주가 예측 모형의 활용 가능성을 높이기 위해선 성능을 향상시키는 것과 함께 모델을 해석 가능한 형태로 제시해 신뢰성을 향상시킬 필요성이 있다. 본 논문은 주가 전망 결정 방법에 따른 예측 결과를 비교하고, 설명 가능성을 부여해 모형 개선했다는 것에 의의가 있다. 연구 결과, 주가 전망을 장기적으로 결정할수록 정확도가 증가하고, XAI 기법을 통해 모형의 개선 근거를 제시할 수 있음을 알 수 있었다. 본 연구를 통해 인공지능 모형의 신뢰성을 확보하고, 합리적인 투자 결정에 도움을 줄 수 있을 것으로 기대한다.

Exploration of Factors on Pre-service Science Teachers' Major Satisfaction and Academic Satisfaction Using Machine Learning and Explainable AI SHAP (머신러닝과 설명가능한 인공지능 SHAP을 활용한 사범대 과학교육 전공생의 전공만족도 및 학업만족도 영향요인 탐색)

  • Jibeom Seo;Nam-Hwa Kang
    • Journal of Science Education
    • /
    • v.47 no.1
    • /
    • pp.37-51
    • /
    • 2023
  • This study explored the factors influencing major satisfaction and academic satisfaction of science education major students at the College of Education using machine learning models, random forest, gradient boosting model, and SHAP. Analysis results showed that the performance of the gradient boosting model was better than that of the random forest, but the difference was not large. Factors influencing major satisfaction include 'satisfaction with science teachers in high school corresponding to the subject of one's major', 'motivation for teaching job', and 'age'. Through the SHAP value, the influence of variables was identified, and the results were derived for the group as a whole and for individual analysis. The comprehensive and individual results could be complementary with each other. Based on the research results, implications for ways to support pre-service science teachers' major and academic satisfaction were proposed.

A Study on Classification Models for Predicting Bankruptcy Based on XAI (XAI 기반 기업부도예측 분류모델 연구)

  • Jihong Kim;Nammee Moon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.333-340
    • /
    • 2023
  • Efficient prediction of corporate bankruptcy is an important part of making appropriate lending decisions for financial institutions and reducing loan default rates. In many studies, classification models using artificial intelligence technology have been used. In the financial industry, even if the performance of the new predictive models is excellent, it should be accompanied by an intuitive explanation of the basis on which the result was determined. Recently, the US, EU, and South Korea have commonly presented the right to request explanations of algorithms, so transparency in the use of AI in the financial sector must be secured. In this paper, an artificial intelligence-based interpretable classification prediction model was proposed using corporate bankruptcy data that was open to the outside world. First, data preprocessing, 5-fold cross-validation, etc. were performed, and classification performance was compared through optimization of 10 supervised learning classification models such as logistic regression, SVM, XGBoost, and LightGBM. As a result, LightGBM was confirmed as the best performance model, and SHAP, an explainable artificial intelligence technique, was applied to provide a post-explanation of the bankruptcy prediction process.

이미지 기반 적대적 사례 생성 기술 연구 동향

  • O, Hui-Seok
    • Review of KIISC
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.

Research trend analysis on adversarial attack detection utilizing XAI (XAI 를 활용한 적대적 공격 탐지 연구 동향 분석)

  • A-Young Jeon;Yeon-Ji Lee;Il-Gu Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.401-402
    • /
    • 2024
  • 인공지능 기술은 사회 전반에 걸쳐 다양한 분야에서 활용되고 있다. 그러나 인공지능 기술의 발전과 함께 인공지능 기술을 악용한 적대적 공격의 위험성도 높아지고 있다. 적대적 공격은 작은 왜곡으로도 의료, 교통, 커넥티드카 등 인간의 생명과 안전에 직결되는 인공지능 학습 모델의 성능에 악영향을 미치기 때문에 효과적인 탐지 기술이 요구되고 있다. 본 논문에서는 설명 가능한 AI 를 활용한 적대적 공격을 탐지하는 최신 연구 동향을 분석한다.

The Prediction of Cryptocurrency Prices Using eXplainable Artificial Intelligence based on Deep Learning (설명 가능한 인공지능과 CNN을 활용한 암호화폐 가격 등락 예측모형)

  • Taeho Hong;Jonggwan Won;Eunmi Kim;Minsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.129-148
    • /
    • 2023
  • Bitcoin is a blockchain technology-based digital currency that has been recognized as a representative cryptocurrency and a financial investment asset. Due to its highly volatile nature, Bitcoin has gained a lot of attention from investors and the public. Based on this popularity, numerous studies have been conducted on price and trend prediction using machine learning and deep learning. This study employed LSTM (Long Short Term Memory) and CNN (Convolutional Neural Networks), which have shown potential for predictive performance in the finance domain, to enhance the classification accuracy in Bitcoin price trend prediction. XAI(eXplainable Artificial Intelligence) techniques were applied to the predictive model to enhance its explainability and interpretability by providing a comprehensive explanation of the model. In the empirical experiment, CNN was applied to technical indicators and Google trend data to build a Bitcoin price trend prediction model, and the CNN model using both technical indicators and Google trend data clearly outperformed the other models using neural networks, SVM, and LSTM. Then SHAP(Shapley Additive exPlanations) was applied to the predictive model to obtain explanations about the output values. Important prediction drivers in input variables were extracted through global interpretation, and the interpretation of the predictive model's decision process for each instance was suggested through local interpretation. The results show that our proposed research framework demonstrates both improved classification accuracy and explainability by using CNN, Google trend data, and SHAP.

Domain Knowledge Incorporated Local Rule-based Explanation for ML-based Bankruptcy Prediction Model (머신러닝 기반 부도예측모형에서 로컬영역의 도메인 지식 통합 규칙 기반 설명 방법)

  • Soo Hyun Cho;Kyung-shik Shin
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.105-123
    • /
    • 2022
  • Thanks to the remarkable success of Artificial Intelligence (A.I.) techniques, a new possibility for its application on the real-world problem has begun. One of the prominent applications is the bankruptcy prediction model as it is often used as a basic knowledge base for credit scoring models in the financial industry. As a result, there has been extensive research on how to improve the prediction accuracy of the model. However, despite its impressive performance, it is difficult to implement machine learning (ML)-based models due to its intrinsic trait of obscurity, especially when the field requires or values an explanation about the result obtained by the model. The financial domain is one of the areas where explanation matters to stakeholders such as domain experts and customers. In this paper, we propose a novel approach to incorporate financial domain knowledge into local rule generation to provide explanations for the bankruptcy prediction model at instance level. The result shows the proposed method successfully selects and classifies the extracted rules based on the feasibility and information they convey to the users.

Design of a Multi-Platform Omok Program for Artificial Intelligence Education (인공지능 교육을 위한 멀티 플랫폼 오목 프로그램 설계)

  • Cha, Joo Hyoung;Woo, Young Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.530-532
    • /
    • 2021
  • This paper deals with AI education service that enables developers who have completed basic programming education to program in C/C++ language in order to learn big data and artificial intelligence. In addition, a customized development environment configuration system according to the development environment and how the user implements and tests artificial intelligence are explained. And also it has a function to check the effect on artificial intelligence through manipulation of various internal parameters. It is expected that it will be possible to develop artificial intelligence education services without language restrictions through networks in the future.

  • PDF