• Title/Summary/Keyword: 설계 충격하중

Search Result 224, Processing Time 0.024 seconds

A Study on Construction Condition of Modular System by Structural Analysis of Construction Stage (시공단계 구조해석을 통한 적층형 모듈러주택의 시공조건 검토)

  • Jo, Min-Joo;Kim, Jong-Sung;Yu, Seong-Yong;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.143-150
    • /
    • 2015
  • At present, the actual condition is that Korean modular structures are limited to a low rise detached house and military barracks. And there is no standardized structural design method of stacked modular structure. Accordingly, in general, they don't review impact force in the stage of stacking and installing a module, the effect which wind load has on a structure in the stage of lifting, and inertial force occurring in the stage of lifting or transporting a module in the process of constructing a structure. Therefore, this study investigated the construction method of modular system to be studied in stages, and decided on the position to which load was applied and boundary condition in structural analysis at each construction stage. Besides, inertial force according to each speed was calculated in the lifting and wheeled transport of module. And we calculated impact load according to lifting speed in module stacking and installation work and wind load due to instantaneous wind speed in the installation work by lifting. On the basis of the suggested method, in the modular system to be studied, it carried out review of structure by changing determining conditions of load being applied by construction stage, such as in the stage of lifting, in the stage of transport, and in the stage of installation, and drew construction conditions securing stability structurally.

Dynamic Analysis of Gimbal Structure System Including Nonlinear Elastic Rubber Vibration Isolator with Shock Acceleration (비선형 탄성 방진 고무부에 충격 가속도를 받는 짐발 구조 시스템의 동적 해석)

  • Lee, Sang Eun;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.415-422
    • /
    • 2016
  • When shock acceleration is applied to a mechanical system, it may cause malfunctioning and damage to the system. Hence, to prevent these problems when developing a gimbal structure system for observation reconnaissance, the MIL-STD-810G shock standard must be satisfied as a design specification. Rubber vibration isolators are generally assembled on the base of the system in order to reduce the shock transferred from the aircraft. It is difficult to analyze the transient behavior of the system accurately, because rubber has a nonlinear load-deformation curve. To treat the nonlinear characteristic of the rubber, bilinear approximation was introduced. Using this assumption, transient responses of the system under base shock acceleration were calculated by the finite element method. In addition, experiments with a true prototype were performed using the same conditions as the analytical model. Compared with experimental data, the proposed numerical method is useful for the transient analysis of gimbal structure systems, including rubber vibration isolators with nonlinear stiffness and damping.

A Study on the Impact-Induced Damage in CFRP Angle-ply Laminates (CFRP 사교적층판의 충격손상에 관한 연구)

  • 배태성;입야영;양동률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Carbon fiber reinforced plastics(CFRP) have gained increased application in aerospace structures because of their specific strength and stiffness, but are sensitive to impact-induced damage. An experimental investigation was carried out to evaluate the impact resistance of CFRP according to the ply angle. The specimens of angle ply laminate composites were employed with [0.deg. $_{6}$/ .deg.$_{10}$/0.deg.$_{6}$], in which 6 kinds of ply angle such as .deg.=15.deg., 30.deg., 45.deg., 60.deg., 75.deg. and 90.deg. were selected. The impact tests were conducted using the air gun type impact testing machine by steel balls of diameter of 5 mm and 10 mm, and impact-induced damages were evaluated under same impact speed of V=60m/s. The impact damaged zones were observed through a scanning acoustic microscope (SAM). The obtained results were summarized as follows: (1) Delaminations on the interfacial boundaries showed th directional characteristics to the fiber directions. The delamination area on the impact side (interface A) was considerably smaller compared to that of the opposite side (interface B). (2) Cracks corresponding to other delaminations than those mentioned in SAM photographs were also seen on the impact damaged zone. (3) The delamination patterns were affected by the ply-angle, the dimensions of the specimen, and the boundary conditions. (4) The impact damaged zone showed zone showed the delamination on the interfacial boundaries, transverse shear cracks of the surface layer, and bending cracks of the bottom layer.r.r.r.

Hybrid Control of Aircraft Landing Gear using Magnetorheological Damper (MR댐퍼를 적용한 항공기 착륙장치의 하이브리드 제어기법 연구)

  • Tak, Jun Mo;Viet, Luong Quoc;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, a hybrid control method that adjusts for the existing force control technique has been presented for consideration. The proposed hybrid control technique does away with the chattering phenomenon occurring in existing force control technique and provides high shock absorption efficiency. In order to design the controller for the landing gear with MR damper, the equation of motion of the landing gear was derived. The hybrid controller was designed after constructing a simulation model using Recur-Dyne, multi-body dynamic analysis software. The hybrid controller can reduce the maximum strut force and displacement based on the skyhook controller, and is able to get the high efficiency by making it work for the additional force control technique. In addition, an effective switching control technique and input shaping technique was applied to prevent the chattering in the drop simulation. Finally, the performance of the landing characteristics was evaluated throughout the various drop simulations.

A Study on the Noise and Vibration Reduction at Sport Center on a Tall Building Apartment (초고층 빌딩 스포츠 센타의 충격성 진동으로 기인하는 소음진동 영향성 평가 및 저감대책)

  • 박해동;김강부;강현승;이홍기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.196-201
    • /
    • 2003
  • 철골조 초고층아파트 내부의 스포츠 시설 운영시 이를 사용하는 시설의 종류와 운동양상에 따라 아파트 상하부층에 소음진동의 민원문제를 유발하게 된다. 초고층 아파트 내부에 스포츠 시설의 배치는 이를 이용하는 사용자에게 편리성의 주지만 철골조의 특성상 충격성 진동원이 발생하는 스포츠 시설은 상하부층인 아파트에 소음진동의 연향으로 인해 이를 방지하는 설계가 요구된다. 일반적인 아파트의 충간 소음진동문제는 이를 발생시키는 상부거주자의 예절과 충간 소음진동 저감기술이지만 아파트 내부의 동일층을 경계로 위치한 스포츠 시설은 시설의 사용성에 반해 하부층에 미치는 영향을 기술적으로 저감하여야 한다. 입주한 초고층아파트에 발생하는 소음진동문제를 풀기 위하여 스포츠 시설 하부층 아파트의 소음진동 기준을 선정하고 스포츠 시설의 주된 진동원인 런닝머신의 하중식을 산정하고 충간 소음진동 저감을 위한 대책을 제시하였다.

  • PDF

Evaluation of Local Effect Prediction Formulas for RC Slabs Subjected to Impact Loading (충격하중이 작용하는 RC 슬래브의 국부손상 산정식에 대한 고찰)

  • Chung, Chul-Hun;Choi, Hyun;Lee, Jung Whee;Choi, Kang Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.543-560
    • /
    • 2010
  • Safety-related concrete structures in a nuclear power plant must be protected against the impact of flying objects, referred to in the profession as missiles. In practice, the structural verification is usually carried out by means of empirical formulas, which relate the velocity of the impinging missile to the wall thickness needed to prevent scabbing or perforation. The purpose of this study is to reevaluate the predictability of the local effect prediction formulas for the penetration and scabbing depths and perforation thickness. Therefore, available formulas for predicting the penetration depth, scabbing thickness, and perforation thickness of concrete structures impacted by solid missiles are summarized, reviewed, and compared. A series of impact analyses is performed to predict the local effects of the projectile at impact velocities varing from 95 to 215 m/s. The results obtained from the numerical simulations have been compared with tests that were carried out at Kojima to validate numerical modelling. The simulation results show reasonable agreement with the Kojima test results for the overall impact response of the RC slabs. From these results, it seems that the Degen equation give a very good estimate of perforation thickness against a tornado projectile for test data. Finally, the results obtained from the impact analysis have been compared with Degen formula to determine the perforation thickness of the RC slab.

Reinforced Performance Evaluation of RC Slab Bridge Using Conclinic Advanced FiberWrep (유리섬유 복합재를 이용한 RC슬래브 교량의 보강성능평가)

  • Park, Soon-Eung;Park, Moon-Ho;Lee, Tack-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.35-40
    • /
    • 2010
  • The present study proposes the strengthening method to use Conclinic Advanced FiberWrep(CAF) so as to improve Load Carrying Capacity of the RC slab bridge. In order to evaluate the strengthening performance, we strengthen 50cm per unit-width of CAF to the slab's bottom of the test bridge that designed with DB 18, then perform Static and Dynamic Field Load Test. As a result of this, 14.7% of the maximum displacement, 5.0% of the strain and 33.7% of the impact factor are reduced after strengthening. At the middle of the test spans, nominal resisting ratio is increased by 27% and Service Load Carrying Capacity is increased by 44.6%, 48.9% of each span 1 and 2. In conclusion, this study indicates that the strengthening method using CAF is very effective to improve the deteriorated RC slab bridge designed with DB 18, to the DB 24 of the first class bridge design load.

Chaotic Response of a Spherical Shell to Impulsive Loading (충격력을 받는 구형 쉘의 혼돈거동 해석)

  • 이재영;강영철
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.167-174
    • /
    • 1997
  • Engineers must be aware of possible sources of chaotic behavior. They may render conventional design predictions untrustworthy and potentially unsafe because of the sensitivity to initial conditions. Dynamic responses of a spherical shell subjected to impulsive loading which act on the center are analyzed using the finite element method. The chaotic responses are identified by the standard methods, such as displacement-time histories, Poincare maps, and phase diagrams. The responses are chaotic, but, not so sensitive to the initial conditions, and the characteristics of responses are not changed with time, in contrast to the case of the responses of beam. The Poincare points scattered in the limited area represent that the responses are chaotic, but do not show the geometric structures. The snap-through phenomena of the shell to the side of the direction of the load or of the opposite direction, is analysed by using the energy diagram.

  • PDF

Impact Resistance Properties of High Strength Fiber-Reinforced Composites According to Types and Amounts of Fibers (섬유 종류 및 혼입량에 따른 고강도 섬유보강 복합재료의 충돌 저항 성능)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Gyu-Yong;Lee, Sang-Kyu;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.349-355
    • /
    • 2020
  • The purpose of this study is to investigate the effects of types and amounts of fibers on the compressive strength and tensile behavior high strength fiber-reinforced composites under a static load and impact resistance properties of composites under a high-velocity projectile impact load. Three kinds of mixtures were designed and specimens were manufactured. compressive strength, uniaxial tension, and high velocity projectile impact load tests were performed. Test results showed that the amount of fiber has a greater effect on the tensile strength an d tensile strain capacity than the compressive strength, an d the tensile strain capacity was improved by using hybrid fibers. It was also found that the amount of steel fiber had a great influence on the impact resistance capacity of panels. Although the impact resistance capacity of panels could be improved by using hybrid fibers, the difference of impact resistance capacity between specimens was found to be larger than the case of use of single fiber.

Evaluation and Design of Mngine Mounts by Making use of Computer (전산을 이용한 엔진지지계의 평가 및 설계)

  • 김동우;조청훈
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.17-27
    • /
    • 1987
  • 최근 자동차기술의 발달로 인한 차량의 경량화, 고급화 추세는 더욱 개선된 승차감을 요구하고 있다. 승차감에 영향을 미치는 주요인으로서는 엔진의 진동과 소음, 변속장치, 구동축 등의 구동 계통의 진동 및 소음, 그리고 노면으로부터의 진동, 외부 공기의 흐름에 의한 소음 등 여러가지가 있다. 엔진지지계는 이중 엔진의 진동 및 소음을 절연하는 기능을 맡고 있고 동시에 엔진하중의 지지, 변위제한, 충격흡수 등의 기능도 가지고 있다. 실제에 있어서 엔진지지계는 진동 및 소음 절연의 기능 외에 다른 기능도 갖고 있으나 이중 가장 어렵고 해석이 곤란한 것은 결국 진동절 연성능이라고 할 수 있다. 그러나 여러 가지 제약조건이 있으므로 최적의 진동절연특성의 실 현이 항상 가능한 것은 아니고 방진고무의 특성치난 지지각도 등의 어느 범위안에서만 선택이 가능하므로 실제 설계에 있어서는 적용상의 특정조건을 만족시키는 초기설계치를 정하여 그때의 진동절연특성을 평가하고 기준이하일때는 설계치를 재조정하여 다시 평가하는 접근방식이 실질 적이다. 따라서 이 설계과정에 필요한 엔진지지계의 진동절연특성해석 및 평가용 컴퓨터 프로 그램을 개발하였으며 그 해석치와 실험결과를 비교하여 타당성을 입증하였다.

  • PDF