• Title/Summary/Keyword: 설계 물성치 산정

Search Result 18, Processing Time 0.02 seconds

An Analysis and Evaluation of Fire Resistance Performance for the Protected Steel Columns in Korea (국내 피복 철골기둥의 내화 성능 분석 및 평가)

  • Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2009
  • Main structural steel members need fire-resistance measures to ensure their fire-resistance performance for a prescribed time. This paper analyzes and evaluates the fire-resistance performance of approved Korean fire-protection products for steel columns. These products are classified into products for board protection and for spray protection, samples of which were selected for the analysis. The fire-resistance performance was analyzed on the basis of Korean and European standards. The Korean standards are considered additional to the Euro-code standards for performance design. The Korean standards generally take more precautions to ensure safety on the temperature side, but require the reflection of material properties, the steel temperature calculation methodology, the profile factor, and the strength verification in a fire.

Buffeting Response Correction Method based on Dynamic Properties of Existing Cable-Stayed Bridge (공용 사장교의 동적특성을 반영하는 버페팅 응답보정법)

  • Kim, Byeong Cheol;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • According to design specifications for structural safety, a bridge in initial design step has been modelled to have larger self-weight, external loads and less stiffness than those of real one in service. Thereby measured buffeting responses of existing bridge show different distributions from those of the design model in design step. In order to obtain accurate buffeting responses of the in-site bridge, the analysis model needs to be modified by considering the measured natural frequencies. Until now, a Manual Tuning Method (MTM) has been widely used to obtain the Measurement-based Model(MBM) that has equal natural frequencies to the real bridge. However, since state variables can be selected randomly and its result is not apt to converge exact rapidly, MTM takes a lot of effort and elapsed time. This study presents Buffeting Response Correction Method (BRCM) to obtain more exact buffeting response above MTM. The BRCM is based on the idea the commonly used frequency domain buffeting analysis does not need all structural properties except mode shapes, natural frequencies and damping ratio. BRCM is used to improve each modal buffeting responses of the design model by substituting measured natural frequencies. The measured natural frequencies are determined from acceleration time-history in ordinary vibration of the real bridge. As illustrated examples, simple beam is applied to compare the results of BRCM with those of a assumed MBM by numerical simulation. Buffeting responses of BRCM are shown to be appropriate for those of in-site bridge and the difference is less than 3% between the responses of BRCM and MTM. Therefore, BRCM can calculate easily and conveniently the buffeting responses and improve effectively maintenance and management of in-site bridge than MTM.

Evaluation of Liquefaction Potential for Soil Using Probabilistic Approaches (확률적 접근방법에 의한 지반의 액상화 가능성 평가)

  • Yi, Jin-Hak;Kwon, O-Soon;Park, Woo-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.313-322
    • /
    • 2006
  • Liquefaction of soil foundation is one of the major seismic damage types for infrastructures. In this paper, deterministic and probabilistic approaches for the evaluation of liquefaction potential are briefly summarized and the risk assessment method is newly proposed using seismic fragility and seismic hazard analyses. Currently the deterministic approach is widely used to evaluate the liquefaction potential in Korea. However, it is very difficult to handle a certain degree of uncertainties in the soil properties such as elastic modulus and resistant capacity by deterministic approach, and the probabilistic approaches are known as more promising. Two types of probabilistic approaches are introduced including (1) the reliability analysis (to obtain probability of failure) for a given design earthquake and (2) the seismic risk analysis of liquefaction for a specific soil for a given service life. The results from different methods show a similar trend, and the liquefaction potential can be more quantitatively evaluated using the new risk analysis method.

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

Development of numerical model for estimating thermal environment of underground power conduit considering characteristics of backfill materials (되메움재 특성을 고려한 전력구 열환경 변화 예측 수치해석모델 개발)

  • Kim, Gyeonghun;Park, Sangwoo;Kim, Min-Ju;Lee, Dae-Soo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.121-141
    • /
    • 2017
  • The thermal analysis of an underground power conduit for electrical cables is essential to determine their current capacity with an increasing number of demands for high-voltage underground cables. The temperature rises around a buried cable, caused by excessive heat dissipation, may increase considerably the thermal resistance of the cables, leading to the danger of "thermal runaway" or damaging to insulators. It is a key design factor to develop the mechanism on thermal behavior of backfilling materials for underground power conduits. With a full-scale field test, a numerical model was developed to estimate the temperature change as well as the thermal resistance existing between an underground power conduit and backfill materials. In comparison with the field test, the numerical model for analyzing thermal behavior depending on density, moisture content and soil constituents is verified by the one-year-long field measurement.

Relationship Between Physical Properties and Compression Index for Marine Clay (해성점토의 물리적 특성과 압축지수의 상관성)

  • 김동후;김기웅;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.371-378
    • /
    • 2003
  • The compression index of clay distributed in the west and south coast of the Korean Peninsula had been studied. Compression index was obtained from the conventional consolidation test, and was conducted accordingly to obtain the field virgin compression curve by means of Schmertmann's graphical correction. To examine a correlation closely between physical properties of soils($e_o$, LL, w) and compression index(Cc), linen. and non-linear regression analysis were employed based on the data collected from tests. The conclusions are as follows. The compression index obtained by means of Schmereann's graphical correction is about 1.16 times for the value of original oedometer test curve for U/D samples. Non-liner regression curve was preferable to establish a correlation equation rather than linear regression curve. All derived equations so far achieved have been summarized and given. However, linear equation is better for practical use so that part by part simplified linear equations were also suggested alternatively together with their own non-linear regression curve.

A Study on Evaluation of Moduli of 3 Layered Flexible Pavement Structures using Deflection Basins (처짐곡선을 이용한 3층 아스팔트 포장 구조체의 물성 추정에 관한 연구)

  • Kim, Soo Il;Kim, Moon Kyum;Yoo, Ji Hyeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.97-107
    • /
    • 1989
  • An inverse self-iterative procedure is developed to estimate layer moduli of 3 layered flexible pavement structures from FWD deflection basins. The theoretical deflection basins of pavement structures obtained by full factorial design are used for the parametric study on the characteristics of deflection basins and the regression analysis. The factorial design is performed for asphalt pavement structures with stabilized base layer and granular base layer, respectively. The initially assumed layer moduli by regression equations and relations between the rate of change of moduli and deflections are used in the procedure to ensure efficiency and accuracy of self-iterative model. The SINELA computer program is used for inverse self-iterative applications to determine theoretical responses. The computer program of this procedure is coded for personal computers and is verified through numerical model tests.

  • PDF

A Study on the Method of Calculating the Deformation Coefficient According to the Horizontal Subgrade Reaction Modulus and Cohesion (수평지반반력계수와 점착력에 따른 지반변형계수 산정방법 연구)

  • Sungjae Jeon;Daeseock Jung
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.31-43
    • /
    • 2023
  • Purpose: In this study, an analysis of the differences between the elastoplastic analysis and the numerical analysis and a study of the design ground constant recalculation method to derive similar trends in the analysis results were conducted. Method: The relational expression between the ground reaction force coefficient and the ground deformation coefficient at the time when the wall displacement becomes the same according to shallow excavation and deep excavation was derived. Result: Based on the measurement results, reverse analysis was performed to re-calculate the ground properties suitable for the site ground, and as a result of comparing and verifying the wall displacement using the derived formula and the literature formula, the proposed formula showed the most similar value. Conclusion: If the proposed formula is used, it will be helpful in practice because it is possible to infer the most similar ground properties to the actual at the time of design.