• Title/Summary/Keyword: 설계허용응력

Search Result 236, Processing Time 0.032 seconds

Creative Design of Cap for Wheel and Axle of Railway Vehicle by Using TRIZ/CAE (TRIZ/CAE를 활용한 철도차량 윤축용 캡의 창의적 설계)

  • Huh, Yong-Jeong;Kim, Jae-Min;Hong, Sung-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2581-2587
    • /
    • 2013
  • This paper aims at the design of wheel and axle with cap. The cap is conceptually designed by using TRIZ/CAE. Wheel axle is used at railway vehicle to safety and it is always investigated to reduce the railway vehicle weight. The cap has hollow shaft with the material of SM45C. Cap is located in the bearing seat of wheel and axle. The cap becomes durable within the allowable stress of EN13103, 13104 standard. In this study, the strength of wheel and axle with cap becomes higher than that of hollow shaft. The weight of wheel and axle with cap becomes lower by about 6.75 percent than that of solid shaft. The confidence of wheel and axle with cap can be improved by comparing with solid and hollow shafts.

Resistance Factors for Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 저항계수 산정)

  • Yoon, Hong-Jun;Jung, Sung-Jun;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.107-116
    • /
    • 2007
  • Load and Resistance Factor Design (LRFD) method is being used increasingly in geotechnical design practice worldwide, and is expected to completely replace the current Allowable Stress Design (ASD) method in the near future. LRFD has advantages over ASD in that it allows the design of superstructures and substructures at a consistent reliable level by quantification of failure probability based on reliability analysis. At present, resistance factors for cast-in-place piles embedded in rocks are determined by AASHTO only for the intact rock conditions. In Korea, however, most of the bedrocks in which piles are embedded are heavily weathered. Thus, this study will try to determine the resistance factors of heavily weathered rocks (so-called intermediate goo-materials). To this aim, reliability analysis was carried out to evaluate the resistance factors of cast-in-place piles embedded in intermediate geo-materials in Korea. Pile load test data of 21 cast-in-place piles of 4 construction sites were used for the analysis. Depending on the method which calculates the pile capacities, the resulting resistance factors ranged between 0.1 and 0.6.

Seismic and Stress Analysis of 72.5kV GIS for Technical Specification of KEPCO (72.5kV GIS 전력 장비의 KEPCO 기준 내진 및 응력 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, So-Ul;Bang, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.207-214
    • /
    • 2017
  • High voltage electric power transmitter GIS(Gas Insulated Switchgear) above 72.5kV needs to satisfy domestic Korean peninsular standard(ES-6110-0002) in KEPCO with respect to normal and special operation conditions which include internal gas pressure, dead weight, wind and seismic load. Some other requirements not described in Korean standard can be applied from other international standards such as IEC(International Electronical Committee) 62271-203 and 62271-207. The GIS is a kind of pressure vessel structure made of aluminum and filled with SF6 gas of internal pressure 0.4~0.5MPa. Finite element analysis of GIS is performed with such operational loads including seismic loading and the stability and reliability is determined according to ASME BPVC(Boiler and Pressure Vessel Code) SEC. VIII standard where the allowable stress level of the pressure vessel is suggested. The result shows that the stress of GIS is satisfied the allowable stress level and the safety factor is about 2.3 for Korean peninsular standard.

A Study on Lightweight Design of Cantilever-type Helideck Using Topology Design Optimization (위상 최적설계를 활용한 캔틸레버식 헬리데크 경량화 연구)

  • Jung, Tae-Won;Kim, Byung-Mo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.453-460
    • /
    • 2017
  • In the offshore industry, helicopters are mainly used for transportation of goods or operating personnel between offshore sites and onshore facilities. A helideck is a structure that is required for landing and take-off of helicopters on the offshore structure. There are several shapes of helidecks depending on the type of offshore structures or installation location. Among them, cantilever-type helidecks usually provide more space on the topside of offshore structures and it is safer against potential accidents like fire or explosion. In this paper, the cantilever-type helideck is selected for the research object and topology design optimization is applied for lightweight design of the helideck. A finite element model is then created from the optimal layout of truss structures of the helideck, and structural analysis is performed under various landing conditions and wind loads. Based on the analysis results, the detailed section dimensions of structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. Also, the final optimal design shows significant decrease in the total weight of the helideck.

Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load (송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.641-652
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

Effect of tack of Fusion Defects on Short-Term Performance of Polyethylene Electrofusion Joints (폴리에틸렌 배관 전기융착부 단기성능 평가를 위한 융합물량 영향 평가)

  • Kil, Seong-Hee;Kwon, Jeong-Rock;Jo, Ji-Hwan
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.153-158
    • /
    • 2005
  • In order to investigate the short-term performance of polyethylene electrofusion joints, the mechanical tests and stress analysis have been conducted to the artificially defected weld joints. The defects of lack of fusion with a square-type were fabricated with 10, 20, 30, 40, 50, 60$\%$ size of the width of heat-ing wire zone, respectively. In this defect sires range, both tensile and bending test results showed the dependence of defect size to the electrofusion joints performance, but both sustained pressure and crush test results didn't. The numerical stress analysis results including the soil and internal pressures, tensile and bend-ing stresses clearly showed the dependence of fusion defect size. Based on both mechanical test and stress analysis results, the maximum acceptable defect size in polyethylene electrofusion joints is discussed.

Strength of Interior Plat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부의 강도산정모델)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.961-972
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to the brittle shear failure of plate-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, according to previous studies, current design methods do not accurately estimate the strength of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed for interior connections. Based on the numerical results, a design method for the connection was developed. At the critical sections around the connection coexist flexural moment and shear developed by lateral and gravity loads, and maximum allowable eccentric shear stresses were proposed based on the interactions between the flexural moment and shear, The proposed method can precisely predict the strength of the connection, compared with the current design provisions. The predictability of the proposed method was verified by the comparisons with existing experiments and nonlinear numerical analyses.

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF

Analytics Study on safety and stability of 50m class Portable Prestressing Bed (50m급 이동식 긴장대의 안전성 및 안정성에 관한 해석적 연구)

  • Kim, Jong Suk;Yoon, Ki Yong;Kim, Yong Hyeog
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.182-182
    • /
    • 2011
  • 현재 국내에서 PSC 거더의 제작은 주로 포스트텐션방식을 사용하고 있다. 포스트텐션방식은 콘크리트 양생 후 긴장력을 도입하여 제작회전율이 높은 특성을 가지나 쉬스, 그라우팅, 정착장치 등이 요구되어 조립과정이 복잡하고 제작단가가 높다. 교량에 적용되는 PSC 거더를 포스트텐션방식 대신에 프리텐션방식으로 제작한다면 제작단가를 대폭 감소시킬 수 있을 것이나, 교량용 PSC 거더의 길이가 일반적으로 30~50m이므로 공장에서 제작하여 현장으로 운반하는 것은 운반비용의 상승 및 운반 가능한 크기의 제한을 받게 된다. 운반의 문제를 해결하기 위해서는 현장에서 PSC 거더를 제작하여야 하는데 현장에 긴장대를 고정식으로 설치하는 것은 제작단가의 상승으로 이어져 경제성을 잃게 된다. 따라서 현장에서 사용할 수 있도록 이동식 긴장대를 제작한다면 경제성을 갖춘 프리텐션방식의 PSC 거더 생산이 가능할 것이다. 50m급 이동식 긴장대에는 약 10MN에 이르는 매우 큰 긴장력이 가해져 이동식 긴장대가 콘크리트 양생전까지 이 긴장력을 저항하여야 한다. 본 논문에서는 유한요소 해석프로그램인 ABAQUS를 사용하여 50m급 PSC 거더를 생산할 수 있는 이동식 긴장대를 모델링하여 약 10MN에 이르는 긴장력이 가해질 때에 이동식 긴장대의 각 구성요소의 거동특성 및 하중에 대한 안전성 및 좌굴에 대한 안정성 확보 여부를 해석적으로 파악하고자 한다. 이동식 긴장대는 구성요소인 정착블럭(긴장BOX)과 중간연결블럭으로 나누어 모델링하였다. 정착블럭(긴장BOX)은 다수의 강판을 4절점 쉘요소(S4R)를 사용하여 직육면체의 BOX 형상에 내부를 보강한 단면으로 구성하였고, 중간연결블럭은 H형강 2개를 일체화한 긴장대 거더와 콘크리트 바닥판 블록이 볼트로 합성된 구조이며, H형강은 4절점 쉘요소(S4R), 바닥판블럭은 8절점솔리드요소(C3D8R)를 사용하였다. 긴장대거더와 바닥판블럭은 합성거동을 하도록 weld option을 사용하여 부분적으로 결합하였다. 정적해석결과 이동식 긴장대에 발생하는 응력은 도로교 설계기준에 SS400 강재의 허용응력 140MPa 보다 작으며 선형탄성좌굴 해석결과 가력하중의 2.22배 약 21MN의 하중이 가력되어야 전체좌굴이 발생하게 될 것으로 추정된다. 해석결과를 보아 50m급 PSC 거더를 생산할 수 있는 이동식 긴장대는 하중에 대한 안전성 및 좌굴에 대한 안정성을 확보하고 있는 것으로 판단된다.

  • PDF

Stability Evaluation of Reinforced Subgrade with Short Geogrid for Railroad During Construction (짧은 보강재를 사용한 철도보강노반의 시공 중 안정성 평가)

  • Kim, Dae Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.11-20
    • /
    • 2014
  • The behaviors and stability of reinforced subgrade with short geogrid were examined and evaluated during construction. First of all, analytical approach for the minimum length of geogrid was performed to guarantee stability during construction loading state. Secondly, the economic aspects for reinforced subgrade were compared with between domestic standards applying with 0.7 H reinforcement length and new way to mix short and long reinforcement. Full scale railroad subgrade was constructed with the size of 5 m high, 6m wide, and 20m long to verify the stability of the subgrade with the length of 0.3 H, 0.35 H, 0.4 H reinforcement. Total 51 sensors were installed to measure settlement, bulging, and the change of stress of the subgrade. It is concluded that the reinforced subgrade with short(0.35H, 35% of height) geogrid had stability within allowable level of deformation and stress increment during construction.