• Title/Summary/Keyword: 설계파 산정

Search Result 116, Processing Time 0.02 seconds

Evalution for Joints of Coastal Environments Blocks (Coastal Environments 블록 적용을 위한 연결부 강도평가)

  • Kim, Chun-Ho;Kim, Kwang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.176-182
    • /
    • 2009
  • Other damage can occur due to the preexisting dull structure and installation of nonenvironmental-friendly concrete structure, lack of function for preventing coastal erosion. Increase of personal income and fast spread of the concept of waterfront casued the initiation of many project to improve aging coastal ports. However, none of environment-friendly structure has been developed and pre-existing solid block, igloo block, tunnel block are used commonly. In piers and lighter's wharf where the ships are mooring, resonance by the generation of a reflected wave caused by penetration wave in the port and port wave increases wave heights in the port and makes difficult to maintain the temperature, causes problems in mooring ships and cargo-working, and eventually increase the occurance of damages of the small ships by the collision. Therefore, development of new types of blcok is necessary. To apply Coastal Environments block developed for this reason, it requires allowable bearing capacity evaluation of shear key. For this study, we made test specimen for connecting part of C.E. Block, and conducted friction test of boundary surface. Data obtained by the experiment was analyzed by finite element analysis and assessed the coefficient of friction between C.E. Block and boundary surface.

A Study on Equivalent Design Wave Approach for a Wave-Offshore Wind Hybrid Power Generation System (부유식 파력-해상풍력 복합 발전시스템의 등가설계파 기법 적용에 관한 연구)

  • Sohn, Jung Min;Shin, Seung Ho;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • Floating offshore structures should be designed by considering the most extreme environmental loadings which may be encountered in their design life. The most severe loading on a wave-offshore wind hybrid power generation system is wave loads. The principal parameters of wave loads are wave length, wave height and wave direction. The wave loads have different effects on the structural behavior characteristic depending on the combination of wave parameters. Therefore, the process of investigation for critical loads based on the individual wave loading parameter is need. Namely, the equivalent design wave should be derived by finding the wave condition which generates the maximum stress in entire wave conditions. Through a series of analysis, an equivalent regular wave height can be obtained which generates the same amount of the hydrodynamic loads as calculated in the response analysis. The aim of this study is the determination of equivalent design wave regarding to characteristic global hydrodynamic responses for wave-offshore wind hybrid power generation system. It will be utilized in the global structural response analysis subjected to selected design waves and this study also includes an application of global structural analysis.

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

Calculation of Water Level Variations and Extreme Waves in Busan Harbor due to Storm Surges (고조로 인한 부산항 해수면 변화 및 극한파랑의 산정)

  • Whang Ho-Dong;Lee Joong-Woo;Kwon So-Hyun;Yang Sang-Yong;Gum Dong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.227-234
    • /
    • 2004
  • Recently huge typhoons had attacked to the coastal waters in Korea and caused disastrous casualties in those area. There are some discussions on correction to the design parameters for the coastal structures. Wave transformation computations with the extreme waves are of value in planning and constructing engineering works, especially in coastal regions. Prediction of typhoon surge elevations is based primarily on the use of a numerical model in this study, since it is difficult to study these events in real time or with use of physical models. Wave prediction with a two dimensional numerical model for a site with complicated coastal lines and structures at the period of typhoon 'Maemi' is discussed. In order to input parameters for the extreme wave conditions, we analyzed the observed and predicted typhoon data. Finally we applied the model discussed above to the storm surge and extreme wave problem at Busan Harbor, the southeast coast of Korea. Effects of water level variation and transformation of the extreme waves in relation with the flooding in coastal waters interested are analyzed. We then mack an attempt to presen a basic hazard map for the corresponding site.

  • PDF

Effect of Relative Density on Lateral Load Capacity of a Cyclic Laterally Loaded Pile in Sandy Soil (모래지반의 상대밀도에 따른 횡방향 반복재하 시 말뚝의 극한지지력 평가)

  • Baek, Sung-Ha;Kim, Joon-Young;Lee, Seung-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.41-49
    • /
    • 2016
  • Pile foundations used as offshore support structures are dominantly subjected to cyclic lateral loads due to wind and waves. In this study, a series of cyclic lateral load tests were performed on a pre-installed aluminum flexible pile in sandy soil with three different relative densities (40%, 70% and 90%) in order to evaluate the effect of cyclic lateral loads on lateral load capacity of a pile. The cyclic lateral loads increased the lateral load capacity of a pile at 40% relative density, whereas they decreased it at 70% and 90% relative densities. This can be explained by the fact that the cyclic lateral loads slightly densified the surrounding soil in relatively loose sand (40%), while the surrounding soil was disturbed in relatively dense sand (70% and 90%). These effects were more obvious as the cyclic lateral load amplitude increased, being independent with the saturation. Also, from the test results, an empirical equation for the lateral load capacity of a cyclic laterally loaded pile in sandy soil was developed in terms of relative density of the soil and the cyclic lateral load amplitude.

Analysis of Berth Operation Ratio in terms of Wave Response at Busan New Port Site (부산신항역 파랑반응에 따른 부두 가동율 해석)

  • Jeong, Jae-Hyun;Lee, Hak-Seung;Lee, Joong-Woo;Yang, Sang-Yong;Jeong, Young-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.57-62
    • /
    • 2006
  • Busan New Port, under construction aiming for the hub of Northeast Asia and Partly in operation, had damaged up to 48 billion Won due to Typhoon 'maemi' in 2003. The present criteria of domestic harbor design only describes about the critical wave height with respect to the size of vessel for harbor tranquility. The berth operation ratio which represents the annual available berthing days is depending on the efficiency of cargo handling work and this depends on the motion of the moored vessel due to the wave action and the characteristics of cargo gears. The motion of moored vessel might be related not only to the wave height but also to wave period. Furthermore, the berth operation ratio relies on external forces such as currents and winds, including the characteristics of mooring system and the specification of the moored vessel. In this study we only deal with berth operation ratio in normal sea state, considering wave and current by measured data and numerical calculation. Especially we tried to evaluate the berth operation ratio for each berth adopting the variation of dredging and reclamation plan and the change of wave environment during the process of the new port construction. For better understanding and analysis of wave transformation process, we applied the steady state spectral wave model and extended mild-slope wave model to the related site. This study summarizes comparisons of harbor responses predicted by two numerical predictions obtained at Busan New port site. Field and numerical model analysis was conducted for the original port plan and the final corrected plan.

  • PDF