• Title/Summary/Keyword: 설계압력

Search Result 2,266, Processing Time 0.033 seconds

A Study on analysis between pressure-drop and cavitation diminution with ball valve (볼 밸브 압력강하와 공동현상감소에 대한 연구)

  • Gu, Bon-Chan;Gi, Jun-U;Lee, Do-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.393-397
    • /
    • 2013
  • 관내의 유량을 제어하는 볼 밸브(ball valve)는 개폐각도(opening degree)가 커짐에 따라 출구에서 유속이 증가하고 밸브(valve)의 입 출구 간 압력강하(pressure drop)가 증가한다. 출구에서의 압력이 작동유체의 포화증기압보다 낮아질 때 공동현상(cavitation)이 발생한다. 관내에서의 공동현상은 배관시스템의 진동 및 소음, 부식 등에 있어서 악영향을 미칠 수 있으므로 설계에 매우 중요한 요소이다. 버터플라이 밸브를 비롯한 다른 밸브에서는 공동현상감소에 대한 연구가 많이 이루어졌다. 이에 본 연구에서는 볼 밸브 내 유동 특성(characteristic of flow)과 볼 밸브의 입출구간 압력강하를 줄이는 연구를 수행하였다. 개폐 각도와 그에 따른 압력강하와의 관계를 Edison_전산열유체를 사용하여 분석하고 공동현상을 감소시킨 볼 밸브의 설계를 제시 하였다.

  • PDF

An Analysis of Attenuation Effect of Pressure Head Using an Air Chamber (공기실을 사용한 압력수두의 완화효과에 대한 분석)

  • Lee, Jae-Su;Yun, Yong-Nam;Kim, Jung-Hun
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.141-150
    • /
    • 1995
  • An air chamber is designed to keep the pressure from exceeding a predetermined value, or to prevent low pressures and column separation. Therefore, it can be used to protect against rapid transients in a pipe system following abrupt pump stoppage. In this research, an air chamber was applied to a hypothetical pipe system to analyze attenuation effect of pressure head for different air volumes, locations, chamber areas, coefficients of orifice loss and polytropic exponents. With an increase of air volume, the maximum pressure head at pump site is decreased and the minimum pressure head is increased. For different locations and areas of the chamber, the attenuation effects do not show much difference. Also, as the orifice loss coefficient increases, the maximum pressure head is decreased. For different polytropic exponents, isothermal process shows lower maximum pressure head than that of the adiabatic process.

  • PDF

Evaluation of CANDU Pressure Tube Integrity (CANDU 압력관의 건전성 평가)

  • 지세환;김영진
    • Journal of the KSME
    • /
    • v.33 no.5
    • /
    • pp.449-455
    • /
    • 1993
  • 지금까지의 CANDU 사고이력과 관련된 문제점을 살펴보면 핵연료 채널의 부적절한 설계 및 설치 그리고 부적절한 압력관 가동조건 등에 많은 문제점이 있었다. 이러한 의미에서 CANDU의 안전성은 압력관의 건전성으로부터 확보된다 하여도 과언이 아니다. 그러나 CANDU에서 차지 하는 중요성에 비추어 압력관의 사용환경은 매우 열약하다. 따라서 가동중 압력관 건전성 위협 요인에 대한 정기적인 검사, 시험 및 평가는 CANDU 안전성확보의 첫걸음이 된다. 특히 건전 성평가에 필요한 주요자료가 압력관 인출시험결과로부터 확보됨을 고려할 때 압력관 인출시험을 국내에서 수행할 수 있는 능력을 확보하는 것 또한 우리에게 부과된 과제라 할 것이다.

  • PDF

Design of Velocity and Pressure Compounded Impulse Turbine (속도 및 압력 복합형 충동 터빈 설계)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • Design of velocity-compounded turbine for 75ton class LRE turbopump application and pressure compounded turbine for 30ton class LRE turbopump has been performed. 1D calculation and CFD analysis were conducted in determining blade and flow passage shape of velocity compounded turbine iteratively. Finally, 23.1% improved specific power and 5% reduced weight turbine to the original design was developed. In case of pressure-compounded supersonic turbine design, rotational speed was increased by 50% and the effect of carryover ratio, 2nd nozzle installation angle, leakage flow of 2nd nozzle, and work sharing factor was studied. Final 1D design resulted 36% increased specific power and 51% reduced weight comparing to the original single-row impulse turbine. It is anticipated that nozzle flow path design will be very important for the accomplishment of expected performance of pressure-compounded turbine and nozzle shape optimization will be conducted through the CFD analysis.

Development of a design theory of a pressure vessel with combined structure of the metal and the composite (금속재와 복합재 이종구조물로 된 압력용기의 설계이론 개발)

  • Lee Bang-Eop;Kim Won-Hoon;Koo Song-Hoe;Son Young-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.61-65
    • /
    • 2006
  • A thery was developed to design a high pressure vessel with combined structure of the metal and the composite to withstand the pressure of several tens of thousands psias to reduce the weight of the impulse motor which produces high level of thrust within several tens of seconds. The elastic-plastic stress analyses were carried out to prove the validity of the design theory A combustion chamber of the impulse motor was designed by the design theory, fabricated, and tested by the hydraulic pressure and the static firings. The bursting pressures from the tests were compared to those predicted by tile design theory and the stress analyses and found to be almost the same. It will be possible to design the high pressure vessel with combined structure of the metal and the composite very easily by the proposed design theory.

  • PDF

Development of a Design Theory of a Pressure Vessel with Combined Structure of the Metal and the Composite (금속재와 복합재 이종구조물로 된 압력용기의 설계이론 개발)

  • Lee Bang-Eop;Kim Won-Hoon;Koo Song-Hoe;Son Young-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.23-30
    • /
    • 2006
  • A thery was developed to design a high pressure vessel with combined structure of the metal and the composite to withstand the pressure of several tens of thousands psias to reduce the weight of the impulse motor which produces high level of thrust within several tens of seconds. The elastic-plastic stress analyses were carried out to prove the validity of the design theory. A combustion chamber of the impulse motor was designed by the design theory, fabricated, and tested by the hydraulic pressure and the static firings. The bursting pressures from the tests were compared to those predicted by the design theory and the stress analyses and found to be almost the same. It will be possible to design the high pressure vessel with combined structure of the metal and the composite very easily by the proposed design theory.

Design and Fabrication of KAERI Thermo Inspector for Inspection of Calandria Front Area in Wolsong Nuclear Power Plant (월성 원자력발전소 칼란드리아 전면부 점검을 위한 열영상 관측시스템(KAERI Thermo Inspector) 설계/제작)

  • 조재완;김승호;박동선
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1083-1086
    • /
    • 1999
  • 중수로(CANDU) 형 월성 원자력발전소의 칼란드리아 압력관 전면부를 감시점검하기 위한 열영상 관측시스템을 설계/제작하였다. 중수로는 가동중에 핵연료를 교체한다. 칼란드리아 전면부에는 380 개의 압력관 채널이 위치하고 있다. 핵연료를 교체할 시에 핵연료 교체장비가 칼란드리아 압력관 채널의 ENDCAP을 열고 핵연료를 장전하는 과정에서 발생할 지도 모르는 중수누출, 핵연료교체장비의 이상상태를 점검하는데 목적이 있다. 열영상카메라는 상용 CCD 카메라에 비해 영상의 해상도가 떨어진다. CCD 카메라는 수증기 누출과 같은 육안검사에 활용하고, 열영상카메라는 압력관 채널의 온도변화 등을 점검하기 위해 CCD/열영상카메라의 융합구조로 설계/제작하였다.

  • PDF

System Design and Performance Test of Hydraulic Intensifier (유압 충격압력 발생기의 시스템 설계와 성능평가)

  • Kim, Hyoung-Eui;Lee, Gi-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.947-952
    • /
    • 2010
  • Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

Design Verification of Cabin Pressurization System by Flight Test of T-50 Advanced Trainer (T-50 비행시험을 통한 조종실 여압시스템의 설계검증)

  • Seo, Dong-Yeon;Son, Won-Ik;O, Yeong-Jin;Kim, Ju-Hyeong;Park, Seong-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.70-75
    • /
    • 2006
  • The cabin pressurization system response should be consistent with the design limits such as the cabin pressure schedule, the pressure regulation tolerance, the maximum rate of pressure change during normal and abnormal operation and the maximum cabin air inflow rate change. In this paper, the results of pressure loss analysis and flight test for cabin pressurization system of T-50 advanced trainer are introduced. The pressure tolerance at unpressurized condition using calculated exit area of pressurization components through pressure loss analysis is predicted. Pressurization components of D company are selected and the predicted pressure tolerance is in good agreement with flight test results. Finally, T-50 pressurization system is verified by some flight tests of T-50 advanced trainer to comply with various pressurization design criteria of MIL-E-18927.

Common Rail Pressure Control Algorithm for Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT를 이용한 디젤엔진의 커먼레일 압력 제어알고리즘 설계 연구)

  • Shin, Jaewook;Hong, Seungwoo;Park, Inseok;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • This paper proposes a common rail pressure control algorithm for passenger car diesel engines. For handling the parameter-varying characteristics of common rail systems, the quantitative feedback theory (QFT) is applied to the design of a robust rail pressure control algorithm. The driving current of the pressure control valve and the common rail pressure are used as the input/output variables for the common rail system model. The model parameter uncertainty ranges are identified through experiments. Rail pressure controller requirements in terms of tracking performance, robust stability, and disturbance rejection are defined on a Nichols chart, and these requirements are fulfilled by designing a compensator and a prefilter in the QFT framework. The proposed common rail pressure control algorithm is validated through engine experiments. The experimental results show that the proposed rail pressure controller has a good degree of consistency under various operating conditions, and it successfully satisfies the requirements for reference tracking and disturbance rejection.