• Title/Summary/Keyword: 설계알고리즘

Search Result 7,322, Processing Time 0.036 seconds

Evolutionarily Optimized Design of Self-Organized Fuzzy Polynomial Neural Networks by Means of Dynamic Search Method of Genetic Algorithms (유전자 알고리즘의 동적 탐색 방법을 이용한 자기구성 퍼지 다항식 뉴럴 네트워크의 진화론적 최적화 설계)

  • Park Ho-Sung;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.475-478
    • /
    • 2005
  • 본 논문에서는 자기구성 퍼지다항식 뉴럴 네트워크(SOFPNN)를 구성하고 있는 퍼지 다항식뉴론(FPM)의 구조와 파라미터를 유전자 알고리즘을 이용하여 최적화시킨 새로운 개념의 진화론적 최적 고급 자기구성 퍼지 다항식 뉴릴 네트워크를 소개한다. 기존의 자기구성 퍼지 다항식 뉴럴 네트워크에서 모델을 설계할 때에는 설계자의 주관적인 특징과 시행착오에 의해서 모델을 구축하였다. 이러한 설계자의 경험을 배제하고 객관적이고 효율적인 모델을 구축하기 위해서 본 논문에서는 FPH의 파라미터들을 최적화 알고리즘인 유전자 알고리즘을 이용하여 동조하였다. 즉, 모델을 구축하는데 기본이 되는 FPN의 각각의 파라미터들-입력변수의 수, 다항식 차수, 입력변수, 멤버쉽 함수의 수, 그리고 멤버쉽 함수의 정점-을 동조함으로써 기존의 모델에 비해서 구조적으로 그리고 파라미터적으로 최적화된 네트워크를 생성할 수 있다. 뿐만 아니라 주어진 데이터의 특성을 모델 구축에 반영하고자 멤버쉽 함수의 정점 역시 유전자 알고리즘으로 동조하였다. 실험적 예제를 통하여 제안된 모델의 성능을 확인한 결과 기존의 퍼지모델 및 신경망 모델에 비해서 아주 우수한 근사화 능력과 일반화 능력을 가짐을 알 수 있다.

  • PDF

Design and Evaluation of A Block Encryption Algorithm using Dynamic-Key (동적 키를 이용한 블럭 암호 알고리즘의 설계 및 평가)

  • 정홍섭;이창두;박규석
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.683-696
    • /
    • 2002
  • The existing block encryption algorithms have been designed for the encryption key value to be unchanged and applied to the round functions of each block, and enciphered. Therefore, it has such a weak point that the plaintext or encryption key could be easily exposed by differential cryptanalysis or linear cryptanalysis, both are the most powerful methods for decoding block encryption of a round-repeating structure. In order to overcome with this weak point, an encryption algorithm using a mote efficient key should be designed. In this paper, a block encryption algorithm which is designed for each encryption key value to be applied to each round block with different value is proposed. This algorithm needs a short processing time in an encryption and decryption, has a high intensity, can apply to electronic commerce and various applications of data protection.

  • PDF

Study on Data Control System Design Method with Complex Data-Algorithm Data Processing (복합적 자료-알고리즘 자료처리 방식을 적용한 자료처리 시스템 설계 방안 연구)

  • Kim, Min Wook;Park, Yeon Gu;Yi, Jonghyuk;Lee, Jeong-Deok
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • In this study, we present the architecture design of data control system in water hazard information platform with analyzing the complexity of the data processing. Generally, data control systems in data collection and analysis platforms base on the constant data-algorithm data processing meaning that data processing between data and algorithm is fixed. But the number of data processing in data control system is rapidly increasing because of increasing of complexity of system. To hold down the number of data processing, dynamic data-algorithm data processing is able to be applied to data control system. After comparison each data-algorithm data processing method, we suggest design method of the data control system optimizing water hazard information platform.

Design of Genetic Algorithm Processor(GAP) for Evolvable Hardware (진화하드웨어를 위한 유전자 알고리즘 프로세서(GAP) 설계)

  • Sim, Kwee-Bo;Kim, Tae-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.462-466
    • /
    • 2002
  • Genetic Algorithm (GA) which imitates the process of nature evolution is applied to various fields because it is simple to theory and easy to application. Recently applying GA to hardware, it is to proceed the research of Evolvable Hardware(EHW) developing the structure of hardware and reconstructing it. And it is growing a necessity of GAP that embodies the computation of GA to the hardware. Evolving by GA don't act in the software but in the hardware(GAP) will be necessary for the design of independent EHW. This paper shows the design GAP for fast reconfiguration of EHW.

An Optmival design of Circularly Polarization Antenna for Sensor Node using Adaptive Particle Swarm Optimization (APSO 알고리즘을 이용한 센서노드용 원형편파 안테나 최적설계)

  • Kim, Koon-Tae;Kang, Seong-In;Oh, Seung-Hun;Lee, Jeong-Hyeok;Han, Jun-Hee;Jang, Dong-Hyeok;Wu, Chao;Kim, Hyeong-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.682-685
    • /
    • 2014
  • In this paper, an improved designed of the circularly polarization antenna for sensor node. Stochastic optimization algorithms of Particle Swarm Optimization (PSO) and Adaptive Particle Swam Optimization(APSO) are studied and compared. To verify that the APSO is working better than the standard PSO, the design of a circularly polarization antenna is shows the optimized result with 27 iterations in the APSO and 41 iterations in th PSO.

  • PDF

Elevator Algorithm Design Using Time Table Data (시간표 데이터를 이용한 엘리베이터 알고리즘 설계)

  • Park, Jun-hyuk;Kyoung, Min-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.122-124
    • /
    • 2022
  • Handling Passenger Traffic is the main challenge for designing an elevator group-control algorithm. Advanced control systems such as Hyundai's Destination Selection System(DSS) lets passengers select the destination by pressing on a selecting screen, and the systems have shown great efficiency. However, the algorithm cannot be applied to the general elevator control system due to the expensive cost of the technology. Often many elevator systems use Nearest Car(NC) algorithms based on the SCAN algorithm, which results in time efficiency problems. In this paper, we designed an elevator group-control algorithm for specific buildings that have approximate timetable data for most of the passengers in the building. In that way, it is possible to predict the destination and the location of passenger calls. The algorithm consists of two parts; the waiting function and the assignment function. They evaluate elevators' actions with respect to the calls and the overall situation. 10 different timetables are created in reference to a real timetable following midday traffic and interfloor traffic. The specific coefficients in the function are set by going through the genetic algorithm process that represents the best algorithm. As result, the average waiting time has shortened by a noticeable amount and the efficiency was close to the known DSS result. Finally, we analyzed the algorithm by evaluating the meaning of each coefficient result from the genetic algorithm.

  • PDF

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.

Initial codebook generation algorithm using a new splitting method (새로운 Splitting 방법을 이용한 초기 코드북 생성 알고리즘)

  • Kim HyungCheol;Cho CheHwang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.139-142
    • /
    • 2001
  • 코드북을 설계하는 알고리즘 중에서 가장 대표적인 방법은 K-means 알고리즘이다. 이 알고리즘은 그 성능 이 초기 코드북에 크게 의존한다는 문제점을 가지고 있다. 따라서 본 논문에서는 Splitting 방법을 이용한 새로운 초기 코드북 생성 알고리즘을 제안하고자 한다. 제안된 방법에서는 기존의 초기 코드북 생성 알고리즘인 Splittng 방법을 적용하여 코드벡터를 생성하되, 미소분리 과정 시 학습벡터의 수렴 빈도가 가장 낮은 코드벡터를 제거하고 수렴 빈도가 가장 높은 코드벡터론 미소분리 하여 수렴 빈도가 가장 낮은 코드벡터와 대체해가며 초기 코드북을 설계한다. 제안된 방법으로 생성된 초기 코드북을 사용하여 K-means 알고리즘을 수행한 결과 기존의 Splitting 방법으로 생성된 초기 코드북을 사용한 경우보다 코드북의 성능이 향상됨을 확인할 수 있었다.

  • PDF

Hardware Implementation of FGNN using Fuzzy Decision Function of the Genetic Algorithm (유전자 알고리즘의 퍼지 결정 함수를 이용한 FGNN 구현)

  • 변오성;문성룡
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.575-583
    • /
    • 2000
  • 본 논문에서 임의의 데이터가 입력되면 기준 영상 중에서 가장 유사도가 큰 영상을 찾아 국부 승리자로 선택하고, 그 국부 승리자 중에서 전체 승리자를 선택하여 최종 출력값을 얻는 계층적 FGNN(Fuzzy Genetic Neural Network)을 제안하고, 이에 하이브리드 퍼지 소속함수와 유전자 알고리즘을 적용하였다. 하이브리드 퍼지 소속함수는 입력 값을 0~1 사이의 값으로 함으로써 시스템의 속도를 빠르게 하고 유전자 알고리즘을 입력값을 일정한 오차 이내로 하여 최적의 영상을 얻도록 하였다. 위의 계층적 FGNN 알고리즘을 회로 설계 및 검증하였다. 또한 제안한 FGNN을 이용하여 영상에 포함된 잡음을 제거하고, 이와 유사한 구조를 가진 FDNN(Fuzzy Decision Neural Network) 성능보다 FGNN의 성능이 우수함을 여러 가지 영상을 통하여 확인하였다. 또한 모의 실험 결과 영상에 대한 평균자승오차(MSE : Mean Square Error)를 비교하였으며, 그 결과 하이브리드 퍼지 함수와 유전자 알고리즘을 적용한 FGNN이 메디안 필터, OC, CO, FDNN 등에 비해 우수함을 확인하였다. FGNN 알고리즘을 Top-Down 방식으로 VHDL(VHSIC Hardware description Language)을 이용하여 코딩(Coding)하고, Synopsys 툴을 이용하여 하드웨어를 설계하였다. 이 알고리즘의 하드웨어는 총 5개의 블록으로 가지고 있고 각각의 블록은 파이프라인 형태로 구성하고, 이는 Synopsys 툴을 이용하여 동작 및 성능을 검증하였다.

  • PDF

Optimized Identification of Genetic Algorithms based FPNN and Its Application to Nonlinear Data (진화 알고리즘 기반 FPNN의 최적 동정 및 비선형 데이터로의 응용)

  • Lee In-Tae;Lee Dong-Yoon;Kim Hyun-Ki;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.305-308
    • /
    • 2005
  • 본 논문은 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크(Genetic Algorithm-based Fuzzy Polynomial Neural Networks ; GAs-based FPNN)를 이용하여 비선형 데이터의 최적화 추론 알고리즘을 제안한다. FPNN의 각 노드는 GMDH와 퍼지규칙을 기초로 만들었다. FPNN의 각 노드는 퍼지 다항식 뉴론(Fuzzy Polynomial Neuron : FPN)이라고 표현하다. 제안된 모델은 구조 선택에 있어서 유전자 알고리즘(Genetic Algorithms : GAs)을 이용하였다. 유전자 알고리즘을 사용하여 입력의 차수와 입력의 개수 그리고 후반부 추론의 형태를 최적 선택하였다. 비선형 데이터에 대한 모델 설계를 위해 최적화 알고리즘인 유전자 알고리즘 기반 FPNN 모델 설계가 유용하고 효과적임을 보인다.

  • PDF