본 연구는 협업 추천 시스템에 적용되는 상품에 대한 고객의 선호도 예측 알고리즘 중 메모리기반 협업필터링 알고리즘의 선호도 예측 특성에 대하여 연구하였다. 메모리기반의 협업필터링 알고리즘은 선호도 예측 대상 고객과 유사한 성향을 가질 것으로 예상되는 고객들의 선호도 평가를 기반으로 특정 상품에 대한 선호도 예측이 이루어진다. 일반적으로 시스템을 이용하는 고객들과 선호성향이 다른 고객들은 선호도 예측 성과가 낮은 것으로 알려져 있으며 이들이 추천시스템의 선호도 예측 정확도를 떨어뜨리는 원인으로 알려져 있다. 본 연구에서는 고객이 상품들에 평가한 선호도 평가의 패턴이 선호도 예측 정확도와 관련성이 높음을 보여 선호도 예측 알고리즘의 개선에 기초 자료를 제공하고자 한다. 고객의 선호도 평가 패턴은 과거 고객이 평가한 자료로부터 얻을 수 있는 사전정보로써 선호도 예측 알고리즘을 적용하기 이전에 이용할 수 있는 정보이다. 본 연구에서는 사전정보를 이용하여 고객의 선호도 예측 오차의 특성을 연구함으로써 이들의 선호도 예측 정확도를 개선시킬 수 있는 알고리즘의 보정방법에 대하여 연구한다. 알고리즘의 보정방법을 선호도 예측 이전에 고객의 선호도 평가 특성으로 판단하여 적용함으로써 사전정보를 이용한 선호도 예측 정확도를 향상시키기 위한 접근법은 기존의 이웃 구성의 접근법과 다른 방법을 취함으로써 알고리즘 개선의 새로운 방향을 제시할 것으로 기대된다.
Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.47-50
/
2015
TV는 타 도메인과 달리, 사전에 정해진 시간에 콘텐츠가 방영된다. 그러므로 TV 프로그램 추천 시스템은 시청자의 현재 시각(time-context)을 고려해야 한다. 시간 기반의 TV 프로그램 추천 방법이 다수 연구되었지만, 대부분의 기존 연구는 특정 시간대(timeslot)에서의 시청자의 선호도를 계산하는 데에만 집중되어 있고, 시청 내역 전체기간에서의 선호도를 고려하지 않은 문제점이 있다. 이러한 문제를 해결하기 위해, 시청자의 지역 선호도와 전역 선호도를 모두 고려한 시간 기반의 TV 프로그램 추천기법을 제안한다. 이를 위해 제안 방법에서는 시간대의 길이에 따라 여러 가지 선호도 모델을 사용한다. 여러 개의 선호도 모델로부터 산출된 선호도를 병합하여 가장 선호도가 높은 TV 프로그램을 추천한다. 실 데이터를 이용한 실험을 통해 기준방식과 비교함으로써, 제안 방법의 효용성을 검증하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.319-321
/
2002
협력적 추천 알고리즘의 성능향상을 위한 많은 연구들이 진행되고 연구 결과로 다양한 협력적 추천 기법들이 제안되고 있다. 이러한 연구에서는 EachMovie, MovieLens등의 선호도(Rating) 값을 기반으로 하는 데이터를 대상으로 추천의 효율을 높이고자 하고 있다. 그러나 실세계에서 우리가 얻을 수 있는 원 거래 데이터(Raw Transaction Data)는 선호도 값을 갖고 있지 않다. 따라서 실세계의 구매 데이터에 효과적인 추천을 하기 위해서는 기존의 선호도 기반 알고리즘이 아닌 구매 정보만을 기반으로 하는 변경된 협력적 추천 알고리즘이 필요하다. 본 논문에서는 연관규칙 탐사 기법에서 사용하는 확신도(confidence)를 유사도식에 사용하고 이를 기반으로 선호도를 예측하는 구매 기반의 협력적 추천 알고리즘을 제안한다.
Collaborative filtering is a technique that effectively recommends unrated items for users. Collaborative filtering is based on the similarity of the items evaluated by users. The existing top-N recommendation methods are based on pair-wise and list-wise preference models. However, these methods do not effectively represent the relative preference of items that are evaluated by users, and can not reflect the importance of each item. In this paper, we propose a new method to represent user's latent preference by combining an existing preference model and the notion of inverse user frequency. The proposed method improves the accuracy of existing methods by up to two times.
Kim, Geon-Su;Lee, Dong-Hun;Yun, Tae-Bok;Lee, Ji-Hyeong
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.56-59
/
2008
현재의 음악 서비스들의 대부분은 음악을 가수 이름이나 장르와 같은 키워드들로 구분하여 사용자에게 제공한다. 하지만 음악의 장르가 다양해지고, 장르별로 음악의 유형도 다양해짐에 따라 키워드 기반은 음악 제공 방법만으로는 사용자가 원하는 음악을 제공하는데 한계가 있다. 이런 한계점을 극복하기 위하여 음악 자체의 성질을 기반으로 음악을 분석하는 컨텐츠 기반의 음악 분석 방법이 필요하다. 또한 사용자가 원하는 음악을 제공 받을 수 있도록 사용자의 음악 선호도를 분석하여 그에 맞는 음악을 제공하는 방법도 필요하다. 본 논문에서는 음악의 시퀀스 정보와 특징을 추출하여 음악 모델을 구축하고, 이를 사용하여 사용자의 음악 선호도를 분석하는 방법을 제안하고, 사용자의 선호도에 맞는 음악을 제공하기 위하여 선호도 분석 방법을 통해 음악을 추천해주는 시스템을 제안한다.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2010.09a
/
pp.65-67
/
2010
위치기반서비스(LBS)는 사용자의 위치를 기반으로 다양한 정보제공 서비스를 하고 있다. 최근 연구에서는 단순한 정보제공이 아닌 사용자의 상황인식(Context-Aware)을 통하여 사용자에게 적합한 정보를 제공해주는 지능화된 서비스를 제공하고 있다. 하지만 현재 연구들은 사용자의 기본정보와 선호도정보를 이용한 단일기준 추론을 통하여 사용자에게 정보를 제공해주고 있으며, 이것은 사용자의 다양한 기준의 의사결정을 반영하지 못하는 한계점이 있다. 이러한 한계점을 극복하기 위하여 본 연구에서는 사용자의 정보, 선호도, 공간지리선호도 정보 Ontology를 구축하고, 의사 결정 기준에 가중치를 부여하는 Cost Value Ontology를 구축하여, 다 기준 의사추론을 통해 사용자에게 적절한 추천 결과가 도출되는 Ontology 추론시스템을 제안한다. 사용자들의 개인적인 특성 지식과 공간지리 선호도 지식을 구축할 수 있으며, 이러한 특성으로 구축된 지식 기반 하에 입력된 사용자 정보와 추론을 통하여 이 시스템을 통해 사용자의 선호도 Ontology를 구축할 수 있으며 이를 이용한 추론을 통하여 사용자의 현재상황에 적합한 결과를 도출함을 보였다.
Typical semantic search query for Semantic search promises to provide more accurate result than present-day keyword matching-based search by using the knowledge base represented logically. Existing keyword-based retrieval system is Preference for the semantic interpretation of a user's query is not the meaning of the user keywords of interconnect, you can not search. In this paper, we propose a method that can provide accurate results to meet the user's search intent to user preference based evaluation by ranking search. The proposed scheme is Integrated ontology-based knowledge base built on the formal structure of the semantic interpretation process based on ontology knowledge base system.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.74-76
/
2014
모바일 단말, 웨어러블 디바이스 등 개인용 단말의 이용이 확대되면서 사용자 및 사용자 그룹의 다양한 미디어 소비정보, 이용 패턴 정보 기반으로 하는 다양한 서비스가 확대되고 있다. 이러한 개인 혹은 사용자 그룹을 대상으로 하는 대표적이면서 가장 서비스 효율을 높일수 있는 서비스 가운데 하나가 타겟팅 광고 서비스이다. 이러한 타겟팅 광고 서비스는 단순한 개인의 선호도 정보만을 반영하는 것에서 개인의 미디어 소비이력, 미디어 이용패턴 정보 등 사용자가 직접적으로 정보를 입력없이 추천이 가능하도록 연구가 계속되고 있다. 본 논문에서는 고정형 및 모바일 단말에서 사용자의 미디어 콘텐츠 선호 정보 및 소비이력 정보를 통합적으로 반영하여 타겟팅 광고 콘텐츠를 자동적으로 선정하고 추천하는 엔진을 설계 구현하였다. 제안한 추천엔진은 콘텐츠 특성에 대한 선호도와 사용자의 콘텐츠 소비 패턴에서 취득된 정보를 기반으로 예측된 선호도를 결합하여 사용자의 최종 선호도를 추정하고, 이를 기반으로 광고 콘텐츠에 대한 추천을 수행한다. 사용자 메타데이터 및 콘텐츠 메타데이터는 TV-Anytime 표준을 기반으로 하였다.
In this paper, we propose a new caching strategy for web servers. The proposed strategy collects only the statistics of the requested file, for example the popularity, when a request arrives. At a point of time, only files with higher forecasted popularity are cached all together. Forecasted popularity based lazy caching (FPLC) strategy uses exponential smoothing method for forecast popularity of web files. And, FPLC strategy shows that the cache hit ratio and the cache transfer ratio are better than those produced by other caching strategy. Furthermore, the experiment that is performed with real log files built from web servers shows our study on forecast method for popularity of web files improves cache efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.