• 제목/요약/키워드: 선형 혼합 모형

검색결과 153건 처리시간 0.026초

일반화된 선형 혼합 모형(GENERALIZED LINEAR MIXED MODEL: GLMM)에 관한 최근의 연구 동향 (A Study for Recent Development of Generalized Linear Mixed Model)

  • 이준영
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.541-562
    • /
    • 2000
  • 일반화된 선형 혼합 모형(GLMM)은 자료가 계수의 형태로 나타나는 범주형 자료의 경우, 혹은 집락의 형태나 과산포된 비정규 자료, 또는 비선형 모형에 따르는 자료를 다루기 위한 모형 설정에 사용된다. 본 연구에서는 이에 대한 개요와 더불어, 이 모형의 적합을 위해 제시된 통계적 기법들중 의사가능도(quasi-likelihood: QL)를 이용한 추정 방법 및 Monte-Carlo 기법을 이용한 추정 방법들에 대해 조사하였다. 또한 GLMM에 대한 현재의 연구 방향 및 앞으로의 연구 가능 주제들에 대해서도 언급하였다.

  • PDF

비모수와 준모수 혼합모형을 이용한 소지역 추정 (Semiparametric and Nonparametric Mixed Effects Models for Small Area Estimation)

  • 정석오;신기일
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.71-79
    • /
    • 2013
  • 지역 또는 도메인에 작은 크기의 표본이 배정되어 추정의 정도가 나쁜 경우에 사용되는 준모수적 또는 비모수적 소지역 추정법은 최근 많은 연구가 진행되고 있다. 본 논문에서는 커널을 이용한 국소다항 혼합모형 소지역 추정법과 벌점 스플라인을 이용한 혼합모형 소지역 추정법이 연구되었다. 이 두 방법과 소지역추정에 흔히 사용되고 있는 선형 혼합모형을 모의실험을 통해 그 우수성을 비교하였다.

로버스트 선형혼합모형을 이용한 필드시험 데이터 분석 (Analysis of Field Test Data using Robust Linear Mixed-Effects Model)

  • 홍은희;이영조;옥유진;나명환;노맹석;하일도
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.361-369
    • /
    • 2015
  • 연속측도의 반응변수가 반복측정된 실험 자료의 분석을 위해 흔히 선형혼합모형이 사용된다. 그러나, 잔차의 분포가 이분산성이거나 비정규성을 가질 때 표준적인 선형혼합모형은 적절하지 않은 결과를 가져온다. 잔차의 분포가 두터운 꼬리를 가진 비정규분포를 보이는 타이어 필드시험 데이터를 로버스트 선형혼합모형에 적합시킴으로써 보다 더 정확하고 신뢰할 수 있는 분석결과를 얻을 수 있다. 추가적으로 신뢰성 분석 결과를 제시한다.

감마 혼합 모형을 통한 반복 측정된 형제 쌍 연관 분석 사례연구 (Gamma Mixed Model to Improve Sib-Pair Linkage Analysis)

  • 김정환;서영주;원성호;나정원;이우주
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.221-230
    • /
    • 2015
  • 전통적으로 반복 측정된 형제 쌍 연관 분석에서는 선형 혼합 모형이 사용되어 왔다. 그러나 그 모형은 관심있는 표현형과 연관된 유전자좌를 찾는 것에 있어서 검정력이 문제가 되는 것으로 지적되어 왔다. 본 연구에서 우리는 이러한 검정력 문제를 개선하는 방법으로 감마 혼합 모형을 고려하였고, 검정력과 제 1종 오류의 관점에서 선형 혼합 모형과 성능을 서로 비교하여 보았다. Genetic Analysis Workshop 13에서 제공된 자료를 이용하여 살펴본 결과, 감마 혼합 모형이 검정력에 있어서 큰 이득을 볼 수 있는 것으로 나타났다.

로지스틱 임의선형 혼합모형의 최대우도 추정법 (Maximum likelihood estimation of Logistic random effects model)

  • 김민아;경민정
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.957-981
    • /
    • 2017
  • 관측되지 않는 효과 또는 고정효과로 설명할 수 없는 분산 구조가 포함되어 정확한 모수 추정이 어려운 경우 체계적인 분석을 위해 일반화 선형 모형은 임의효과가 포함된 일반화 선형 혼합 모형으로 확장되었다. 본 연구에서는 일반화 선형 모형 중에서도 이분적인 반응변수를 다루는 로지스틱 회귀모형에 임의효과를 포함한 최대 우도 추정 방법을 설명한다. 그중에서도 라플라스 근사법, 가우스-에르미트 구적법, 적응 가우스-에르미트 구적법 그리고 유사가능도 우도에 대한 최대우도 추정법을 자세히 알아본다. 또한 제안한 방법을 사용하여 한국 복지 패널 데이터에서 정신건강과 생활만족도가 자원봉사활동에 미치는 영향에 대해 분석한다.

혼합효과모형의 리뷰 (Review of Mixed-Effect Models)

  • 이영조
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.123-136
    • /
    • 2015
  • 관측 가능한 변수들 사이의 관계를 묘사한 갈릴레오의 물리학 법칙 발견 이후, 과학은 큰 성과를 거두며 발전해왔다. 그러나, 관측할 수 없는 변량효과를 함께 이용하여 더 많은 자연 현상을 설명할 수 있게 되었고, 이를 이용한 최초의 통계적 모형인 혼합효과모형이 소개되었다. 계산기술의 발달과 더불어 복잡한 현상에 대한 추론을 위하여 혼합효과모형은 그 중요성이 더욱 커지고 있다. 이러한 혼합효과모형은 최근 다단계 일반화 선형모형을 포함한 여러 모형으로 확장되었으며, 관측할 수 없는 변량효과를 추론하기 위한 다단계 가능도가 제시되었다. 혼합효과모형 특집호를 통해 이러한 모형들이 여러 통계학적 문제점을 해결하는 과정을 제시하고, 앞으로 어떤 확장이 추가적으로 요구되는 지에 대하여 논할 것이다. 빈도록적 접근법과 베이지안 접근법을 함께 다룬다.

불균형 자료에서 AIC를 이용한 선형혼합모형 선택법의 효율에 대한 모의실험 연구 (Simulation Study on Model Selection Based on AIC under Unbalanced Design in Linear Mixed Effect Models)

  • 이용희
    • 응용통계연구
    • /
    • 제23권6호
    • /
    • pp.1169-1178
    • /
    • 2010
  • 본 논문은 불균형 자료에서 선형혼합모형에 적용되는 Akaike Information Criterion(AIC)의 효율에 대한 연구이다. Vaida와 Balanchard (2005)에 의해 제안된 cAIC(conditional AIC)는 mAIC(marginal AIC)가 임의효과의 예측에 대한 불확실성을 모형선택에서 반영하지 못하는 단점을 극복할 수 있는 방법이다. cAIC에 대한 이론적인 성질과 확장은 Liang 등 (2008)과 Greven과 Kneib (2010)에 의하여 연구되었다. cAIC의 형태는 자료의 구조에 영향을 받지는 않지만 선형혼합모형에서 모수의 추정 효율은 자료의 불균형의 정도에 따라 많은 영향을 받는 것이 알려져 있다. 기존의 연구에서 실시한 모든 모의실험이 자료가 균형인 경우에만 실행되어 자료의 불균형이 AIC에 근거한 혼합모형 선택 방법의 효율에 어떤 영향을 미치는지 알려져 있지 않다. 본 논문은 자료의 불균형이 모형선택 방법의 효율에 미치는 영향을 모의실험을 통하여 알아보았다. 자료의 불균형이 심해짐에 따라 AIC에 근거한 모형선택방법은 복잡한 모형을 선택하는 경향이 낮아짐을 보였다.

단부 철근콘크리트 중앙부 철골조로 이루어진 혼합구조부의 비선형 이력거동 (Nonlinear Hysteretic Behavior of Hybrid Steel Beams with Reinforced Concrete Ends)

  • 이은진;김욱종;문정호;이리형
    • 한국전산구조공학회논문집
    • /
    • 제15권2호
    • /
    • pp.379-387
    • /
    • 2002
  • 본 연구에서는 단부 철근콘크리트와 중앙부 철골로 이루어진 혼합구조보의 비선형 이력거동에 대한 해석 모형을 제시하였다. 해석을 위하여 IDARC2D 프로그램을 사용하였으며, 기존의 실험결과를 대상으로 적절한 모형화 기법과 계수를 제시하였다. IDARC2D의 다각형 모형은 부재의 초기강성을 과대평가할 수 있기 때문에, 먼저 혼합구조보의 초기강성을 적절히 표현할 수 있는 새로운 혼합모형을 도입하였다. 그리고 혼합모형을 이용하여 혼합구조보의 이력거동을 적절히 표현할 수 있도록 이력거동 계수들을 제시하였다. 끝으로 해석한 결과를 실험결과와 비교·평가하였으며, 초기강성은 5%이내, 강도는 10%이내의 우수한 결과를 보였다.

선형혼합모형의 역할 및 활용사례: 유전역학 분석을 중심으로 (Linear Mixed Models in Genetic Epidemiological Studies and Applications)

  • 임정민;원성호
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.295-308
    • /
    • 2015
  • 지난 수십 년 동안 유전형 기술(genotyping technology)의 발달로 개인별 유전자 정보를 얻기 위해 필요한 비용이 감소함에 따라, 다양한 인간 질병의 원인 유전자를 규명하기 위한 많은 유전역학 연구들이 진행되어 왔다. 예를 들어 전장유전체관련분석(genome-wide association studies)은 수백 개에 이르는 표현형(phenotypes)에 대하여 수천 개에 이르는 원인유전자를 규명하였다. 유전체 자료의 홍수로 인하여 대규모 유전체 자료를 분석할 수 있는 다양한 분석 알고리즘에 개발되었으며, 특별히 선형혼합모형은 유전율의 추정부터 관련분석(association studies)에 이르기까지 유전역학 연구에서 광범위하게 활용되고 방법론이었다. 본 논문에서는 유전역학 연구에 있어 빈번하게 활용되는 선형혼합모형의 활용 사례를 나열하고, 각 분석 모형 별 추정치들의 생물학적 의미를 논하고자 한다.

PCA 혼합 모형을 위한 효율적인 구조 선택 방법 (An Efficient Model Selection Method for a PCA Mixture Model)

  • 김현철;김대진;방승양
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.538-540
    • /
    • 2001
  • PCA는 다변수 데이터 해석법 중 가장 널리 알려진 방법 중 하나로 많은 응용을 가지고 있다. 그런데, PCA는 선형 모델이어서 비선형 구조를 분석하는데 효과적이지 않다. 이를 극복하기 위해서 PCA의 조합을 이용하는 PCA 혼합 모형이 제안되었다. PCA 혼합 모형의 핵심은 구조 선택, 즉 mixture 요소의 수와 PCA 기저의 수의 결정 인데 그의 체계적인 결정 방법이 필요하다. 본 논문에서는 단순화된 PCA 혼합 모형과 이를 위한 효율적인 구조 선택 방법을 제안한다. 각각의 mixture 요소 수에 대해서 모든 PCA 기저를 갖도록 한 상태에서 PCA 혼합 모형의 파라미터를 EM 알고리즘을 써서 결정한다. 최적의 mixture 요소의 수는 오류를 최소로 하는 것으로 결정한다. PCA 기저의 수는 PCA의 정렬성 특성을 이용해서 중요도가 적은 기저부터 하나씩 잘라 내며 오류가 최소로 하는 것으로 결정한다. 제안된 방법은 특히 다차원 데이터의 경우에 EM 학습의 횟수를 많이 줄인다. 인공 데이터에 대한 실험은 제안된 방법이 적절한 모델 구조를 결정한다는 것을 보여준다. 또, 눈 감지에 대한 실험은 제안된 방법이 실용적으로도 유용하다는 것을 보여준다.

  • PDF