• Title/Summary/Keyword: 선형회귀 모델

Search Result 440, Processing Time 0.023 seconds

Dynamic Instability of Strength-Limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 동적 불안정)

  • Han, Sang-Whan;Kim, Jong-Bo;Bae, Mun-Su;Moon, Ki-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2008
  • This study investigates the dynamic instability of strength-limited bilinear single degree of freedom (SDF) systems under seismic excitation. The strength-limited bilinear hysteretic model best replicates the hysteretic behavior of the steel moment resisting frames. To estimate the dynamic instability of SDF systems, the collapse strength ratio is used, which is the yield-strength reduction factor when collapse occurs. Statistical studies are carried out to estimate median collapse strength ratios and those dispersions of strength-limited bilinear SDF systems with given natural periods, hardening stiffness ratios, post-capping stiffness ratios, ductility and damping ratios ranging from 2 to 20% subjected to 240 earthquake ground motions recorded on stiff soil sites. Equations to calculate median and standard deviation of collapse strength ratios in strength-limited bilinear SDF systems are obtained through nonlinear regression analysis. By using the proposed equations, this study estimated the probabilistic distribution of collapse strength ratios, and compared this with the exact values from which the accuracy of the proposed equations was verified.

Sensor Fault-tolerant Controller Design on Gas Turbine Engine using Multiple Engine Models (다중 엔진모델을 이용한 센서 고장허용 가스터빈 엔진제어기 설계)

  • Kim, Jung Hoe;Lee, Sang Jeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.56-66
    • /
    • 2016
  • Robustness is essential for model based FDI (Fault Detection and Isolation) and it is inevitable to have modeling errors and sensor signal noises during the process of FDI. This study suggests an improved method by applying NARX (Nonlinear Auto Regressive eXogenous) model and Kalman estimator in order to cope with problems caused by linear model errors and sensor signal noises in the process of fault diagnoses. Fault decision is made by the probability of the trend of gradually accumulated errors applying Fuzzy logic, which are robust to instantaneous sensor signal noises. Reliability of fault diagnosis is verified under various fault simulations.

Numerical Analysis of Stress-Strain Behavior of Geofoam (지오폼의 응력-변형률 거동의 수치적 해석)

  • Chun, Byung-Sik;Lim, Hae-Sik;Ahn, Tae-Bong;Lee, Cheol-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.77-88
    • /
    • 2000
  • 연약지반상에 하중 경감을 목적으로 발포성 폴리스티렌(Expanded Polystyrene)을 사용하는 사례가 최근 꾸준히 증가하고 있다. 공법의 요점은 연약지반상에 축조되는 상부구조물에 의한 응력증가를 감소시켜서 결국에는 침하를 방지하기 위한 것이다. 이것을 지오폼(geofoam)이라고 하는데, 지오폼은 교대나 옹벽의 뒷채움재로 사용할 경우 횡토압을 감소시키기 때문에 옹벽이나 교대의 뒷채움재료로 사용하기도 한다. 이와 같이 그 사용이 꾸준히 증가하고 있지만 뒷채움이나 연악지반상에 사용할 때 지오폼의 거동을 예측하는 적절한 수치모델이 아직은 개발되자 않았다. 본 연구에서는 지오폼의 응력-변형 특성을 연구하고 그 탄소성 예측모델을 제시하였다. 이를 위하여 삼축압축시험을 실시하였으며 구속응력과 지오폼의 밀도를 다양하게 변화시켜 그 응력-변형특성을 조사하고 회귀분석을 통하여 비선형 구성모델을 제시하였다. 그 결과 지오폼은 탄성 선형모델보다 탄소성모델 특성에 더 가까운 것을 알 수 있었으며 체적변화율과 축방향 변형률에는 특별한 상관 관계가 있음을 알 수 있었다.

  • PDF

A Study on Optimal Identification of Fuzzy Polynomial Neural Networks Model Using Genetic Algorithms (유전자 알고리즘을 이용한 FPNN 모델의 최적 동정에 관한 연구)

  • 이인태;박호성;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.429-432
    • /
    • 2004
  • 본 논문은 기존의 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks ; FPNN) 모델을 이용하여 비선형성 데이터에 대한 추론을 제안한다. 복잡한 비선형 시스템의 모델동정을 위하여 생성된 GMDH 방법에 기초한 FPNN의 각 노드는 퍼지 규칙을 기반으로 구축되었으며, 층이 진행되는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. FPNN 각각의 활성노드를 퍼지다항식 뉴론(Fuzzy Polynomial Neuron ; FPN)이라고 표현한다. FPNN의 후반부 구조는 입출력 변수 사이 의 간략과 회귀다항식 (1차, 2차, 변형된 2차식) 함수에 의해 구현된다. 규칙의 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 또한 유전자 알고리즘을 사용하여 각노드의 부분표현식을 구성하는 입력변수의 수, 입력변수와 차수의 선택 동조를 통하여 최적의 Genetic Algorithms(GAs)을 이용한 FPNN모델을 설계하는 것이 유용하고 효과적임을 보인다.

  • PDF

Illumination Robust Face Recognition using Ridge Regressive Bilinear Models (Ridge Regressive Bilinear Model을 이용한 조명 변화에 강인한 얼굴 인식)

  • Shin, Dong-Su;Kim, Dai-Jin;Bang, Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • The performance of face recognition is greatly affected by the illumination effect because intra-person variation under different lighting conditions can be much bigger than the inter-person variation. In this paper, we propose an illumination robust face recognition by separating identity factor and illumination factor using the symmetric bilinear models. The translation procedure in the bilinear model requires a repetitive computation of matrix inverse operation to reach the identity and illumination factors. Sometimes, this computation may result in a nonconvergent case when the observation has an noisy information. To alleviate this situation, we suggest a ridge regressive bilinear model that combines the ridge regression into the bilinear model. This combination provides some advantages: it makes the bilinear model more stable by shrinking the range of identity and illumination factors appropriately, and it improves the recognition performance by reducing the insignificant factors effectively. Experiment results show that the ridge regressive bilinear model outperforms significantly other existing methods such as the eigenface, quotient image, and the bilinear model in terms of the recognition rate under a variety of illuminations.

Relationship Between Physical Properties and Compression Index for Marine Clay (해성점토의 물리적 특성과 압축지수의 상관성)

  • 김동후;김기웅;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.371-378
    • /
    • 2003
  • The compression index of clay distributed in the west and south coast of the Korean Peninsula had been studied. Compression index was obtained from the conventional consolidation test, and was conducted accordingly to obtain the field virgin compression curve by means of Schmertmann's graphical correction. To examine a correlation closely between physical properties of soils($e_o$, LL, w) and compression index(Cc), linen. and non-linear regression analysis were employed based on the data collected from tests. The conclusions are as follows. The compression index obtained by means of Schmereann's graphical correction is about 1.16 times for the value of original oedometer test curve for U/D samples. Non-liner regression curve was preferable to establish a correlation equation rather than linear regression curve. All derived equations so far achieved have been summarized and given. However, linear equation is better for practical use so that part by part simplified linear equations were also suggested alternatively together with their own non-linear regression curve.

N-supplying Capability Evaluation of Corn Field Soils in Pennsylvania (Pennsylvania주 옥수수 재배 토양의 질소공급능력 평가)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.359-367
    • /
    • 1998
  • In order to determine the nitrogen supplying capabilities (NSC) of corn fields, 47 field experiments were performed in Pennsylvania over 3 year from 1986 and NSCs were estimated by the regression analysis with chemical properties and soil attributes. Although the content of $NO_3-N$ in soil showed the best correlation with NSC ($R^2=0.518$), the standardized partial regression coefficient of $NO_3-N$ for NSC was 0.52, with some variations over the years. This value was slightly higher than those of the other properties which ranged from 0.001 to 0.351. Multiple linear regression with soil attributes for the evaluation of NSC was better than simple regression with $NO_3-N$. The coefficient of determination ($R^2$) for the evaluation of NSC was gradually increased; 0.599 with selected chemical properties, 0.698 with quantitative attributes(chemical properties and depth of Ap horizon), and 0.839 with quantitative and selected qualitative soil attributes. Consequently, in order to evaluate NSC, analysis by multiple linear regression with soil attributes was more reliable and better model than by the simple regression model.

  • PDF

Effects of Multicollinearity in Logit Model (로짓모형에 있어서 다중공선성의 영향에 관한 연구)

  • Ryu, Si-Kyun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.113-126
    • /
    • 2008
  • This research aims to explore the effects of multicollinearity on the reliability and goodness of fit of logit model. To investigate the effects of multicollinearity on the multinominal logit model, numerical experiments are performed. The exploratory variables(attributes of utility functions) which have a certain degree of correlations from (rho=) 0.0 to (rho=) 0.9 are generated and rho-squares and t-statistics which are the indices of goodness of fit and reliability of logit model are traced. From the well designed numerical experiments, following findings are validated : 1) When a new exploratory variable is added, some of rho-squares increase while the others decrease. 2) The higher relations between generic variables lead a logit model worse with respect to goodness of fit. 3) Multicollinearity has a tendency to produce over-evaluated parameters. 4) The reliability of the estimated parameter has a tendency to decrease when the correlations between attributes are high. These results suggest that we have to examine the existence of multicollinearity and perform the proper treatments to diminish multicollinearity when we develop logit model.

Development of Forest Volume Estimation Model Using Airborne LiDAR Data - A Case Study of Mixed Forest in Aedang-ri, Chunyang-myeon, Bonghwa-gun - (항공 LiDAR 자료를 이용한 산림재적추정 모델 개발 - 봉화군 춘양면 애당리 혼효림을 대상으로 -)

  • CHO, Seung-Wan;KIM, Yong-Ku;PARK, Joo-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • This study aims to develop a regression model for forest volume estimation using field-collected forest inventory information and airborne LiDAR data. The response variable of the model is forest stem volume, was measured by random sampling from each individual plot of the 30 circular sample plots collected in Bonghwa-gun, Gyeong sangbuk-do, while the predictor variables for the model are Height Percentiles(HP) and Height Bin(HB), which are metrics extracted from raw LiDAR data. In order to find the most appropriate model, the candidate models are constructed from simple linear regression, quadratic polynomial regression and multiple regression analysis and the cross-validation tests were conducted for verification purposes. As a result, $R^2$ of the multiple regression models of $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}$ among the estimated models was the highest at 0.509, and the PRESS statistic of the simple linear regression model of $HP_{25}$ was the lowest at 122.352. $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}-based$ models, thus, are comparatively considered more appropriate for Korean forests with complicated vertical structures.

Prediction Model for Specific Cutting Energy of Pick Cutters Based on Gene Expression Programming and Particle Swarm Optimization (유전자 프로그래밍과 개체군집최적화를 이용한 픽 커터의 절삭비에너지 예측모델)

  • Hojjati, Shahabedin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.651-669
    • /
    • 2018
  • This study suggests the prediction model to estimate the specific energy of a pick cutter using a gene expression programming (GEP) and particle swarm optimization (PSO). Estimating the performance of mechanical excavators is of crucial importance in early design stage of tunnelling projects, and the specific energy (SE) based approach serves as a standard performance prediction procedure that is applicable to all excavation machines. The purpose of this research, is to investigate the relationship between UCS and BTS, penetration depth, cut spacing, and SE. A total of 46 full-scale linear cutting test results using pick cutters and different values of depth of cut and cut spacing on various rock types was collected from the previous study for the analysis. The Mean Squared Error (MSE) associated with the conventional Multiple Linear Regression (MLR) method is more than two times larger than the MSE generated by GEP-PSO algorithm. The $R^2$ value associated with the GEP-PSO algorithm, is about 0.13 higher than the $R^2$ associated with MLR.