얼굴인식과 같은 고차원 영상의 패턴분류 문제에서는 특징추출과정이 필수적이라 할 수 있다. 특징추출방법 중 부분공간기법은 데이터의 표현이 우수할 뿐만 아니라 차원 감소 면에서도 효율적이라 보고되고 있으며, 그 대표적인 방법으로 주성분분석, 선형판별분석 등이 널리 알려져 있다. 하지만, 이들 방법은 전역적 변환 방법으로써 포즈, 조명 등의 변화에 민감하여, 그 변화량이 크면 전역적 변환으로 인한 얼굴정보가 전체적으로 손실될 가능성이 크다. 따라서, 이러한 변화들에 대해 잘 대처하기 위해서는 얼굴영상에서 변화들을 상쇄시키는 정규화 작업을 수행해야만 한다. 정규화를 추구하는 이유는 일반적인 얼굴과 가깝게, 다시말해 평균 얼굴과 가깝게 하기 위함이고, 이러한 정규화를 위해서는 부분적 변환 방법이 이상적이라 할 수 있다. 이 방법은 변환으로 인한 얼굴 정보가 부분적 손실만을 유발하기 때문에 전역적 변환 방법에 비해 적합하다고 할 수 있다. 본 논문에서는 지역적 부분공간기법 중 지역특징분석을 SVM커널에 적용하여, 기존 SVM다항식커널에 지역적 정보를 포함시킴으로써, 보다 강력하고 새로운 SVM커널을 디자인하였다.
본 논문은 차세대 지능형 기술 분야중 하나인 유비쿼터스 컴퓨팅 환경 기반에서의 얼굴인식을 제안한 것으로, 모바일 장치 중 하나인 핸드폰 카메라를 이용하여 얼굴 영상을 취득하고, 이를 이용하여 얼굴의 특징을 추출하고 인식하는 과정을 통해 모바일 보안을 생각하고자 한다. 얼굴인식을 위해 제안하는 방법은 PCA와 Fuzzy-LDA를 사용하였으며, 모바일 환경에서 데이터의 량을 줄이기 위해 다해상도 분석을 기반으로 하는 이산 웨이블렛을 사용하였다. 또한 획득된 특징데이터의 연결성을 확인하여 인식률을 얻기 위해 유클리디언 거리 측정 법을 사용하였다. 마지막으로 본 논문에서 제안한 방법의 유용성을 알아보기 위해 핸드폰 카메라를 이용해 실험한 결과 일반 카메라에서 획득한 영상에 비해 모바일 장치로부터 획득한 영상이 저해상도를 갖음에도 불구하고 높은 성능을 갖음을 확인할 수 있었다.
인공지능 기술은 우수한 성능을 기반으로 다양한 분야에 적용되고 있지만 입력 데이터에 인간이 감지할 수 없는 적대적 섭동을 추가하여 인공지능 모델의 오작동을 유도하는 적대적 예제에 취약하다. 현재까지 적대적 예제에 대응하기 위한 방법은 세 가지 범주로 분류할 수 있다. (1) 모델 재학습 방법; (2) 입력 변환 방법; (3) 적대적 예제 탐지 방법. 이러한 적대적 예제에 대응하기 위한 방법은 끊임없이 등장하고 있지만 각 적대적 공격 유형을 분류하는 연구는 미비한 실정이다. 따라서, 본 논문에서는 차원 축소와 군집화 알고리즘을 활용한 적대적 공격 유형 분류 방법을 제안한다. 구체적으로, 제안하는 방법은 적대적 예시로부터 적대적 섭동을 추출하고 선형 판별 분석(LDA)를 통해 적대적 섭동의 차원을 축소한 후에 k-means 알고리즘으로 적대적 공격 유형 분류를 수행한다. MNIST 데이터셋과 CIFAR-10 데이터셋을 대상으로 한 실험을 통해, 제안하는 기법은 5개의 적대적 공격(FGSM, BIM, PGD, DeepFool, C&W)을 효율적으로 분류할 수 있으며, 적대적 예제에 대한 정상 입력을 알 수 없는 제한적인 상황에서도 우수한 분류 성능을 나타내는 것을 확인하였다.
얼굴인식 등과 같은 고차원 식별문제에서는 샘플패턴의 수가 패턴의 차원보다 작아지게 된다. 이러한 상황에서 차원을 축소하기위해 선형판별분석법을 적용할 경우, 희소성(Small Sample Size: SSS)문제가 발생한다. 최근, SSS 문제를 해결하기 위하여 비유사도에 기반 한 식별법(Dissimilarity-Based Classification: DBC)을 이용하는 방법이 검토되었다. DBC에서는 특징 벡터 대신에 학습 샘플들로부터 추출한 프로토타입들과의 비유사도를 측정하여 입력 패턴을 식별하는 방법이다. 본 논문에서는 비유사도 표현단계와 DBC 학습단계에서 퓨전기법을 중복 적용하는 다단계 퓨전기법(Multi-level Fusion Strategies: MFS)으로 DBCs를 최적화시키는 방법을 제안한다. 제안 방법을 벤취마크 얼굴영상 데이터베이스를 대상으로 실험한 결과, 식별률을 향상시킬 수 있음을 확인하였다.
본 논문은 유비쿼터스 컴퓨팅 환경 기반에서의 온라인 얼굴인식 시스템 구현을 기술한다. 구현된 시스템은 CMOS 카메라를 장착한 PDA를 이용하여 얼굴영상을 획득하고 이 영상을 무선랜을 이용하여 인증 서버로 전송하여 서버로부터 인증된 결과를 받도록 하였다. 먼저 클라이언트 측인 PDA에서는 등록과 인증을 확인할 수 있도록 임베디드 비주얼 프로그램으로 사용자 인터페이스를 구축하고, 서버 영역에서는 얼굴인식에서 탁월한 성능을 보이는 PCA와 LDA 알고리즘을 사용하여 PDA로부터 전송 받은 얼굴 데이터를 학습하고 인식한 결과를 재전송하는 부분이 구현되었다. 시스템 구현에서 실시간성을 확보하기 위해 PDA에서는 영상에 웨이블렛을 이용하여 압축한 뒤 압축률 효과가 좋은 JPG 형식의 데이터로 서버에 전송하였다. 본 논문에서 구현한 시스템은 학습과정에서 미리 구한 고유값을 이용하여 테스트 얼굴영상을 같은 공간에 투영시켜 서로간의 유사도를 비교하도록 하여 얼굴인식 속도 및 성능을 개선하였다.
미래의 청정 에너지자원인 가스하이드레이트 개발을 위해 국내 부존이 유망한 울릉분지 5개의 지역에 대하여 2007년 시추작업을 수행하여 모든 시추공으로부터 물리검층 자료를 취득하였으며 이중 UBGH1-04, UBGH1-09, UBGH1-10 시추공에서 코어 자료를 취득하였다. 이 연구에서는 기확립한 가스하이드레이트 퇴적층 물성 추정 기법 및 UBGH1-04, UBGH1-09, UBGH1-10 시추공에서의 물성 추정 결과를 바탕으로 사용자 친화적 소프트웨어인 "KMU GH Logs 2010"을 개발하였다. 또한 코어 미회수 시추공인 UBGH1-01 및 UBGH1-14 시추공의 물리검층 자료를 이용하여 가스하이드레이트 퇴적층의 물성을 추정하였다. 밀도 검층 자료를 사용하여 공극률을 추정하였으며, 전기비저항 검층 및 음파 검층을 이용하여 가스하이드레이트포화율을 추정하였다. 물리검층 자료와 코어의 퇴적상 분석 자료를 이용하여 선형 판별 분석 기법을 통해 퇴적상을 추정함으로써 가스하이드레이트 해리의 징후가 나타나는 DITM 및 MSS 퇴적상에 대한 판별이 가능함을 확인하였다.
대학수학능력시험(수능)은 고등학교 3년간의 학업 성취도를 측정하는 대표적인 평가 도구로서 대한민국 대학 입시에 있어 매우 중요한 역할을 하는 시험이다. 응시생들의 학업 성취도를 효과적으로 평가하기 위해서는 수능의 난이도가 적절하게 조절되어야 하나 지금까지는 수능 난이도의 편차가 매우 크게 나타나 매 입시연도마다 여러 가지 문제점을 야기해왔다. 본 연구에서는 전문가의 판단에 의존한 기존 방식에서 벗어나 지금까지 시행된 모의고사 및 실제 시험을 통해 축적된 자료를 바탕으로 데이터마이닝 기법을 적용하여 영어영역 문제의 난이도를 예측하는 모델을 구축하고 난이도 예측에 영향을 미치는 요소를 판별하고자 한다. 이를 위해 각 문항의 특성을 판별할 수 있는 여러 지표와 함께 지문, 문제, 답안 등에 나타난 단어들의 특징을 토픽 모델링(topic modeling) 기법을 이용하여 정량화하고 이를 바탕으로 선형회귀분석 및 의사결정나무 기법을 이용하여 각 문항의 난이도를 예측하는 모델을 구축하였다. 구축된 예측 모델을 실제 문제에 적용한 결과 난이도의 상/하 구분에 대한 예측 정확도는 90% 수준으로 나타났으며, 실제 정답률 대비 오차 비율은 약 16% 이내인 것으로 나타났다. 또한 배점 및 문제 유형이 문제의 난이도에 큰 영향을 미치며 지문이 특정 주제에 관련된 경우에도 난이도에 영향을 미치는 것을 확인하였다. 본 연구에서 제시된 방법론을 이용하여 영어영역 각 문제들에 대한 기대 정답률의 범위를 추정할 수 있으며 이를 종합하여 영어영역 전체 문제에 대한 정답률 예측을 통해 적절한 난이도의 문제를 출제하는 데 기여할 수 있을 것으로 기대한다.
클러스터링은 대표적인 비교사 학습 방법의 하나로 균일한 특성을 가지는 데이터를 군집으로 묶기 위해 사용된다. 균일한 특성을 가지는 데이터 부분집합을 문맥으로 정의하고 문맥 내에서 국부적으로 분류를 행하는 융합 방법이 사용되고 있지만 클러스터링은 비교사 학습 방법이라는 한계로 인해 클러스터링 결과로 만들어지는 문맥이 분류에 있어 최선임을 보장하기 어렵다. 이 논문에서는 생성된 클러스터를 문맥으로 가정하고 각 문맥에서 분류를 시행하는 경우 최소의 오류를 보일 수 있는, 분류를 고려한 클러스터링 기법을 제안한다. 제안하는 방법은 선형 판별 분석에서와 유사하게 클러스터 내 동일한 클래스에 속하는 데이터 쌍은 작은 거리 값을, 서로 다른 클래스에 속하는 데이터 쌍은 큰 거리 값을 가지도록 하기 위한 제약 조건을 적용하여 분류 오류를 줄이도록 하였다. 제안한 방법의 실효성은 실험 결과를 통해 확인할 수 있다.
본고에서는 노선별 카드자료와 정산자료를 바탕으로 시내버스 운행계통 및 운행실태를 여러 가지 통계기법을 이용하여 분석함으로서 시내버스 노선개편 이후의 시내버스 노선체계 특성을 밝히고 있다. 운행거리와 운행시간과의 관계는 운행속도에 영향을 많이 받는 것으로 나타났고, 배차간격을 10분 이내로 하기 위해서는 단위시간당 운행대수가 0.1013대/분이상이 되어야 하며, 운행시간의 경우는 오전시간대보다 오후시간대가 더 많이 소요되는 것으로 나타났다. 이용승객 규모에 따른 운행계통 비교에서는 운행거리, 배차간격, 운행시간, 운행속도 모든 부문에서 이용승객이 적은 노선의 편차가 이용승객이 많은 노선보다 크게 나타났다. 한편, 카드건수, 평균수입, 환승률간의 분석 결과, 카드건수와 평균수입의 관계는 일반노선이 선형함수 관계, 좌석 및 급행노선은 지수함수 관계로 설명될 수 있다. 또한 일반노선, 좌석 및 급행노선의 환승률 1% 증가를 카드건수로 환산하면 각각 6.3건/대/일, 4.9건/대/일의 감소에 해당하는 것으로 분석되었다. 마지막으로 흑자노선과 적자노선의 분석 결과인데, 흑자노선과 적자노선을 판별하는데 유효한 4가지 변수를 판별력의 크기순으로 나열하면 km당 운행대수, 외곽경유 유무, 지하철 경유수, 종합대학 경유수순이 된다. 향후 마을버스 환승요금제 시행 시에는 수입증가를 위하여 상기 유효변수들을 잘 고려한 시내버스 노선조정과 대중교통우선정책이 필요하며, 비용절감을 위하여 시내버스와 마을버스의 위계를 보다 명확히 한 노선운영이 필요할 것으로 판단된다.
교통사고 위험도 지수 산정 모델의 개발은 교통사고와 사상자수의 발생률을 줄이기 위한 대책으로 도로이용자 그룹, 도로와 가로망의 구역, 인구집단 등에 대한 교통위험도를 수식 또는 모델화를 통해 사전에 적용하여 효과를 극대화하고자 한다. 국외에서는 위험도평가모형을 통해 단일로 및 교차로에 개선방안 우선순위를 선정하는 방법으로 활용하고 있으며, 국내에서도 일부 사업에 적용되어 활용하고 있는 실정이다. 하지만 모형의 독자적인 개발보다는 국외의 모형을 국내 실정에 맞도록 일부 변형하여 활용하고 있어 그 정확성에 의문이 제기되고 있다. 따라서, 본 연구에서는 춘천시의 96개의 교차로를 대상으로 교통사고 발생 현황, 기하구조, 통제방식, 교통량, 회전교통량 등을 통해 교차로 평가요소를 추출하였으며, 추출된 평가 요소들의 상관분석을 통해 최종적인 변수를 도출하였다. 최종적으로 도출된 변수를 바탕으로 신호 구분, 차로수, 교차로형태의 세변수의 선형모형 분석을 통한 분산분석 기법을 이용하여 교차로 디자인 모형을 개발하였으며, 교차로의 계층분류, 판별변수 선정을 통해 신호교차로 위험도 모형, 비신호교차로 위험도 모형을 개발하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.