• Title/Summary/Keyword: 선형운동거리

Search Result 44, Processing Time 0.021 seconds

Minimum-Time Trajectory Planning for a Robot Manipulator amid Obstacles (로봇팔의 장애물 중에서의 시간 최소화 궤도 계획)

  • 박종근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.78-86
    • /
    • 1998
  • This paper presents a numerical method of the minimum-time trajectory planning for a robot manipulator amid obstacles. Each joint displacement is represented by the linear combination of the finite-term quintic B-splines which are the known functions of the path parameter. The time is represented by the linear function of the same path parameter. Since the geometric path is not fixed and the time is linear to the path parameter, the coefficients of the splines and the time-scale factor span a finite-dimensional vector space, a point in which uniquely represents the manipulator motion. The displacement, the velocity and the acceleration conditions at the starting and the goal positions are transformed into the linear equality constraints on the coefficients of the splines, which reduce the dimension of the vector space. The optimization is performed in the reduced vector space using nonlinear programming. The total moving time is the main performance index which should be minimized. The constraints on the actuator forces and that of the obstacle-avoidance, together with sufficiently large weighting coefficients, are included in the augmented performance index. In the numerical implementation, the minimum-time motion is obtained for a planar 3-1ink manipulator amid several rectangular obstacles without simplifying any dynamic or geometric models.

  • PDF

Adaptive Observer Based Longitudinal Control of Vehicles

  • Rhee, Hyoung-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.266-272
    • /
    • 2004
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters such as mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed in this paper is stable by the Lyapunov function candidate. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

Response State of EEG Wave Type on Visual Cortex According to Color Vision Target (색각 시표에 따른 시피질 뇌파의 반응 상태)

  • Kim, Douk Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.5-9
    • /
    • 2000
  • The visual evoked potential was electrophysiological method for the identify of the EEG response on visual cortex. This test was objective test method on the eye function. This study was used the visual evoked potential for the objective color test. The subjects was a normal color function in Korean adults. The test condition was performed on the differens distance and illumination. According to convergence condition of color vision target. On the appearance of EEG wave of visual stimulation on visual cortex. The most EEG wave style was delta wave, and the next amount wave form was beta wave and theta wave, and the least EEG wave form was alpha wave. The histogram of amplitude of EEG wave form was almost non-Gaussian shape, and the phase diagram of amplitude was almost all linear shape. On the kinds of color vision target, the frequency of EEG wave style appeared a similar results.

  • PDF

Effect of Satisfaction in Neighborhood Park Environments on Physical Activity and Health - The Case of Seongsan-gu and Uichang-gu in Changwon City - (근린공원 환경의 만족도가 신체활동과 건강에 미치는 영향 - 창원시 성산구와 의창구를 대상으로 -)

  • Park, Kyung-Hun;Lee, Woo-Sung;Kim, Tae-Hwan;Kim, Eun-Jung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.3
    • /
    • pp.64-75
    • /
    • 2014
  • The purpose of this study is to analyze the effects of satisfaction in neighborhood park environments located in the Changwon-si of Gyeongsangnam-do, South Korea, on physical activity, the number of parks used for health improvement, and health levels based on Body Mass Index(BMI). Accordingly, a survey was conducted of 429 nearby residents and users of eight neighborhood parks located in urban areas of Seongsan-gu and Uichang-gu in the Changwon-si. The correlation between the environmental perception of neighborhood parks and physical activity and health, which was observed in the survey results, was analyzed using one-by-one linear regression analysis. By summarizing the study results, it was found that the primary reasons for avoiding park use were lack of time, time and effort required to reach the park(i.e., distance from the park), and lack of facilities within the park. Conversely, the primary reasons for using the park included accessibility, walking or strolling, leisure facilities, trees or shade, and diversity in exercise areas. In the case of park users, walking or strolling was the most common activity in the park. On average, park users walked to the parks for 10 minutes and exercised for an hour at least twice per week. With respect to the physical environment of the parks and surrounding areas, park users showed a high level of satisfaction with the distance between their houses and parks and the street environment. On the contrary, they exhibited low levels of satisfaction with water spaces and sightseeing within the parks. Subsequently, it was shown that the number of people using the parks for physical activities and health improvement was positively influenced(within a 5% significance level) by the intent to use the park for exercise, time spent in the park, satisfaction with park use and health improvement, distance to the park, and the convenience of using the park for the elderly. However, only the health improvement gained from park use was found to exhibit a correlation with BMI at the 10% significance level. Continuous accumulation of practical case studies on physical activities in parks and their health improvement effects is required. Through this, park spaces that are under the threat of reduction or elimination owing to various development plans can be conserved and expanded. Furthermore, such case studies can be used to provide data as the basis for deriving park plans and designs that improve parks' functions as sites of physical activity and health improvement.

Association Study of Zygote Arrest 1 on Semen Kinematic Characteristics in Duroc Boars (두록 정자 운동학적 특성과 Zygote arrest 1 유전자 변이와의 연관성 분석)

  • Lee, Mi Jin;Ko, Jun Ho;Kim, Yong Min;Choi, Tae Jeong;Cho, Kyu Ho;Kim, Young Sin;Jin, Dong Il;Kim, Nam Hyung;Cho, Eun Seok
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.29 no.4
    • /
    • pp.150-157
    • /
    • 2018
  • The Zygote arrest 1 (ZAR1) gene is known to affect early embryonic development in various vertebrates. In this study, we performed the association analysis to check whether there is any significant relationship between semen kinematic characteristics and the ZAR1 gene. To determine semen kinematic characteristics, we measured motility (MOT), straight-line velocity (VSL), curvilinear velocity (VCL), average path velocity (VAP), linearity (LIN), straightness (STR), amplitude of lateral head displacement (ALH), and beat cross frequency (BCF) of spermatozoa in boars. In order to detect single nucleotide polymorphisms (SNPs), we extracted genomic DNA from multiple Duroc boars, and then subsequently used them in sequencing reactions. As a result, three SNPs were detected in the intronic region of ZAR1 gene (g.2435T>C in intron 2, g.2605G>A and g.4633A>C in intron 3 ). SNPs g.2435T>C and g.2605G>A were significantly associated with MOT (p<0.01) and VSL (p<0.05), and g.4633A

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

Prediction of the Intensity of Vibration Around the Crossing Part of Manganese Turnout (망간분기기 크로싱부 인근의 진동 발생수준 예측)

  • Eum, Ki-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.61-66
    • /
    • 2008
  • In railroad operation, turnout is the device designed to provide very critical functions of moving the train to the neighboring rail. It's the only movable section among the rail and track equipment, which has a complicated structure and as rapid movement between the wheel and rail during operation is unavoidable, the safety and the vibration caused by the impact load of the passing train becomes always the major concern. Response to rail vibration tends to vary depending on physical properties of the rail, rail base and the ground, making it difficult to estimate the quantitative outcome through the measurement. Thus, experimental or empirical approach, rather than an analytic method, has been more commonly employed to deal with the ground vibration. To predict the vibration of the turnout, an experimental value and the measured values are applied in parallel to the factors with a high degree of uncertainty. This study hence was intended to compare and analyze the vibration values measured at the crossing part of manganese turnout by type of train and turnout and distance, as well as predict the intensity of vibration generated at the crossing part of manganese turnout when tilting train accelerates.

Guidance Law to Reach Circular Target Area With Grazing Angle Constraint (지향각 구속조건을 갖는 원형 목표구역 도달 유도 법칙)

  • Jeon, In-Soo;Lee, Jin-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.884-890
    • /
    • 2008
  • A new guidance law to reach circular target area with grazing angle constraint is proposed as one of midcourse guidance laws of unmanned air vehicles. The purpose of the law is to control the grazing angle between the velocity vector of the vehicle and the line of sight to the aiming point, the center of the circular target area, when the vehicle passes any point on the circle. The optimal solution is derived based on the optimal control theory minimizing a range weighted control energy subject to the nonlinear dynamic equations of the vehicle approaching to the circular target area with grazing angle constraint. The major properties including a convergence of the solution are examined and the performance of the law applied to some typical scenarios is shown by the numerical simulation.

Development of Flight Control System for Gliding Guided Artillery Munition - Part II : Guidance and Control (유도형 활공 탄약 비행제어시스템 개발 Part II : 유도 및 제어)

  • Lim, Seunghan;Pak, Changho;Cho, Changyeon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.229-236
    • /
    • 2014
  • In this paper, the guidance laws and controllers for the gliding guided artillery munition is studied. The gliding guided artillery munition has wings for gliding to increase a range; therefore previous guidance laws and controllers for the guided munition could not be applied. Concepts of vector field guidance and proportional navigation guidance are applied for mid-term and terminal guidance, respectively. The gliding guided artillery munition is operated within wide altitude and speed areas; therefore, the controllers are designed for each area, and gain-scheduling and the linear interpolation technique is applied to compute the appropriate gains.

An Exploratory Study of Searching Human Body Segments for Motion Sensors of Smart Sportswear: Focusing on Rowing Motion (동작에 따른 피부변화 분석을 통한 동작센서 부착의 최적위치 탐색: 조정 동작을 중심으로)

  • Han, Bo-Ram;Park, Seonhyung;Cho, Hyun-Seung;Kang, Bokku;Kim, Jin-Sun;Lee, Joohyeon;Kim, Han Sung;Lee, Hae-Dong
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.17-30
    • /
    • 2017
  • Lots of interdisciplinary studies for fusion of high technologes and the other areas of research had been tried in these days. In sports training area, high technologies like a vital sign sensor or an accelerometer were adopted as training tools to improve the performance of the sports players. The purpose of this study is finding the proper locations on the human body for attaching the motion sensors in order to develop a smart sportswear which could be helpful in training players. The rowing was selected as a subject sport as lots of movements of the joint on human body could be seen in rowing motions. The players of rowing could be devided into two weight divisions, the lightweight and the heavyweight. In this study, the change rates of distance between markers on human skin as the players moved were took on the back, the elbow, the hip and the knee area on human body by 3D motion capturing system. The distances between markers and the differences between the lightweight and heavyweight were analyzed. Finally, this study provided the guide lines for designing a motion sensing smart sportswear.