• Title/Summary/Keyword: 선행냉각

Search Result 51, Processing Time 0.026 seconds

Cool Down Characteristics of 7 Tonf-class Liquid Rocket Engine for KSLV-II (한국형발사체 7톤급 액체로켓엔진 냉각 특성)

  • Im, Ji-Hyuk;Yu, Byungil;Lee, Kwang-Jin;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.50-57
    • /
    • 2021
  • Engine cool down process is necessary for the liquid rocket engines using cryogenic propellants in order to meet the requirement of engine inlet temperature. This paper evaluates the cool down characteristics of oxidizer supply pipeline and engine in prechill process prior to the engine firing tests, and calculate the quantity of liquid oxygen consumption.

Analysis of Endothermic Regenerative Cooling Technologies by Using Hydrocarbon Aviation Fuels (탄화수소 항공유를 이용한 흡열재생냉각 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.113-126
    • /
    • 2021
  • In order to develop active cooling systems for a hypersonic cruise vehicle, a series of studies need to be preceded on regenerative cooling technologies by using endothermic reaction of liquid hydrocarbon aviation fuels. Among them, it is essential to scrutinize fluid flow/heat transfer/endothermic pyrolysis characteristics of supercritical hydrocarbons in a micro-channel, as well as to acquire thermophysical properties of hydrocarbon fuels in a wide range of temperature and pressure conditions. This study, therefore, reviewed those technologies and analyzed major findings in related research areas which have been carried out worldwide for the development of efficient operational regenerative cooling systems of a hypersonic flight vehicle.

Study on Model Identification and Pre-Differential 2-DOF PID Flow Control Algorithm for Cooling Processes (냉각 프로세서의 모델규명 및 선행미분형 2 자유도 PID 유량 제어 알고리즘에 관한 연구)

  • Hwang, I-Cheol;Park, Cheol-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1917-1923
    • /
    • 2010
  • This study focuses on model identification and a 2-DOF PID control algorithm for cooling processes; a pneumatic butterfly-type control valve is used for this purpose. The mathematical model is a transfer function composed of a time delay and a second-order delay system. The control valve is identified as a first-order delay system with a time delay and included in the controlled plant. From the experimental data sets for a demo plant, the model parameters are identified, and the 2-DOF PID control gains are analytically derived by Kitamori's method. We show via a computer simulation and an experimental test that the performance of the proposed 2-DOF PID control system is better than that of a conventional 1-DOF PID control system.

Numerical Study on the Effect of Injection Nozzle Shape on the Cooling Performance in Supersonic Film Cooling (초음속 막냉각 유동에서 분사 노즐 형상이 냉각성능에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Sang-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.641-648
    • /
    • 2016
  • In this study, the effect of injection nozzle shape on the supersonic film cooling performance is analyzed using CFD. The design parameters are inside and outside angles of upper plate of nozzle and nozzle tip thickness. It is observed that the mass flow rate of film cooling decreases with increase of inside angle, while the effect of the change of mass flow rate on the film cooling effectiveness is relatively small. In addition, cooling performance is generally reduced, except ahead of the local region where shock wave interaction with film cooling occurs, in accordance with the growth of the outside angle and tip thickness. In this paper, the CFD simulation is performed using a commercial software, ANSYS Fluent V15.0, and the CFD model is validated by comparing it with the experimental data shown in preceding research.

Effect of Heat Transfer and Phase Change of Coolant on the Performance of Mixed-gas Ejection System (냉각제의 분사조건 및 상변화가 혼합가스 사출시스템의 성능에 미치는 영향)

  • Kim, Hyun Muk;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.84-93
    • /
    • 2018
  • Three-dimensional (3D) numerical simulations have been carried out to study how coolant injection conditions influence the cooling efficiency and projectile ejection performance in a mixture-gas ejection system (or gas-steam launch system). The 3D single-phase computational model was verified using a 1D model constructed with reference to the previous research and then a two-phase flow computation simulating coolant injection on to hot gas was performed using a DPM (Discrete Phase Model). As a result of varying the coolant flow rate and number of injection holes, cooling efficiency was improved when the number of injection holes were increased. In addition, the change of the coalescence frequency and spatial distribution of coolant droplets caused by the injection condition variation resulted in a change of the droplet diameter, affecting the evaporation rate of coolant. The evaporation was found to be a critical factor in the design optimization of the ejection system by suppressing the pressure drop while the temperature decreases inside the breech.

A Study of the Cooling Effect for a Water-cooled Heat Structure of the Electric Vehicle Inverter System (수냉식 대용량 인버터의 방열구조에 따른 냉각효과에 대한 연구)

  • Kim, Gyoung-Man;Woo, Byung-Guk;Kang, Chan-Ho;Cho, Sang-Joon;Yun, Young-Deuk;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.343-344
    • /
    • 2010
  • 화석연료의 고갈로 인하여 친환경 자동차에 대한 연구와 상용화가 급속도로 진행되면서 점점 대형 차종으로 그 범위가 넓어지고 있다. 대형 차종에 적용되는 전기동력 시스템의 MCU(Motor Control Unit), GCU(Generator Control Unit), DC/DC 컨버터 등과 같은 전장품도 그 용량이 커지면서 상용화를 위해 효율적인 측면도 많이 부각되지만 스위칭 소자, 변압기, 초크, 다이오드 등에서 동작으로 인해 열이 발생하고 제품의 구조상 밀폐된 공간에 장착이 되기 때문에 발열로 인한 동작의 신뢰성과 제품의 내구성에 큰 영향을 미치게 된다. 그중 가장 발열이 심한 IGBT(Insulated Gate Bipolar Transistor) 등과 같은 스위칭 소자에서 발생하는 열을 효과적으로 냉각시키기 위해 수냉구조가 필수적이며 동일한 조건의 수압, 유량에 보다 높은 방열특성을 가지기 위해 냉각구조에 대한 해석이 제품을 개발 전에 선행되어야 한다. 본 논문에서는 유로의 냉각핀 형상과 유로 구조에 따라 방열특성이 어떠한 차이가 있는지 시뮬레이션 프로그램을 통하여 비교하고, 모사발열체를 이용한 방열부의 냉각 성능 시험과 다이나모 환경의 최대 출력 시험을 통하여 방열 특성을 확인하였다.

  • PDF

Ultimate Behavior of Reinforced Concrete Hyperbolic Cooling Tower (R/C 쌍곡 냉각탑의 극한 거동)

  • Min, Chang Shik;Kim, Saeng Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.59-70
    • /
    • 1992
  • Inelastic nonlinear behavior of a hyperbolic cooling tower under wind loading is studied using a finite element program developed on a Cray Y-MP. Convergence studies for the elastic and inelastic analyses are performed using three mesh models. It is shown that the mesh convergence plays an important role in accurately predicting the inelastic behavior of a cooling tower. Even though the cooling tower resists the applied forces through membrane stresses, it is found that the bending stresses play an important role in the failure and behavior of the cooling tower. The present analysis gives a shape factor of 1.48, which indicates a significant redistribution of meridional stresses. It is further evidenced by the distribution of meridional reinforcement yielding which reaches up to $30^{\circ}$ from the windward meridian. The present practice of using elastic analysis for calculating the design stresses appears to be at least safe and conservative. A more comprehensive study should lead to conclusions that would allow use of a higher-than-one shape factor, thus requiring less meridional reinforcement than the present design method does.

  • PDF

A Study about Detection of Defects in the Nuclear Piping Loop System Using Cooling Lock-in Infrared Thermography (원전 배관 루프시스템의 냉각 위상잠금 적외선열화상을 이용한 결함 검출에 관한 연구)

  • Kim, Sang-Chae;Kang, Sung-Hoon;Yun, Na-Yeon;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.321-331
    • /
    • 2015
  • A study on the application of cooling defect detection was performed on the basis of a preceding study on the heated defect detection in nuclear piping loop system, using lock-in infrared thermography. A loop system with piping defects was made by varying the wall-thinning length, the circumference orientation angle, and the wall-thinning depth. The test was performed using an IR camera and a cooling device. Distance between the cooling device and the target loop system was fixed at 2 m. For analyzing experimental results, the temperature distribution data for cooling, and phase data were obtained. Through the analysis of this data, the defect length was measured. The reliability of the measurements for cooling defect conditions was shown to be higher in the lock-in infrared thermography data than the infrared thermography data.

Preliminary Research of Regenerative Cooling Channel Design for Small Scale Bipropellant Thruster (소형 이원추진제 추력기를 위한 재생냉각 유로형상 설계에 대한 선행연구)

  • Jang, Dong-Wook;Jo, Sung-Kwon;Cho, Hwang-Rae;Bang, Jeong-Seok;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • Applicability of regenerative cooling in 2,500 N-class bipropellant thruster using hydrogen peroxide and kerosene was considered for improvement of performance and application in various missions. Calculation was performed by one dimensional approach using hydrogen peroxide as a coolant. The heat flux of thruster at nozzle throat was estimated at 18 - 20 MW/$m^2$. Designed cooling channel width and height were 2.5 mm and 0.5 mm, respectively. Based on designed cooling channel configuration, flat plate model was manufactured and tested for estimation of pressure drop in cooling channel, and CFD analysis was compared with the test result. The maximum error between CFD analysis and experimental result was approximately 13% and average error was approximately 5%.

Preliminary Research of Regenerative Cooling for Small Scale Combustors (소형 연소기를 위한 재생냉각의 선행연구)

  • Jang, Dong-Wuk;Jo, Sung-Kwon;Cho, Hwang-Rae;Bang, Jeong-Seok;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.163-170
    • /
    • 2011
  • Applicability of regenerative cooling in 2,500 N-class bipropellant thruster using hydrogen peroxide and kerosene was considered for improvement performance and application in various missions. Calculation was performed by one dimensional approach using hydrogen peroxide as a coolant. In designed regenerative cooling thruster, heat flux at nozzle throat was estimated at 18 ~ 20 $MW/m^2$. Designed cooling channel width and height were 2.5 mm and 0.5 mm, respectively. Based on designed cooling channel configuration, flat plate model was manufactured and tested for estimation of pressure drop in cooling channel, and CFD analysis was compared with the test result. The maximum error between CFD analysis and experimental result was approximately 13% and average error was approximately 5%.

  • PDF