An optimization system, APROGA II using genetic algorithm, was developed to solve multi-modal and multiobjective problems. To begin with, Multi-Niche Crowding(MNC) algorithm was used for multi-modal optimization problem. Secondly, a new algorithm was suggested for multiobjective optimization problem. Pareto dominance tournaments and Sharing on the non-dominated frontier was applied to it to obtain multiple objectives. APROGA II uses these two algorithms and the system has three search engines(previous APROGA search engine, multi-modal search engine and multiobjective search engine). Besides, this system can handle binary and discrete variables. And the validity of APROGA II was proved by solving several test functions and case study problems successfully.
This paper suggested an approach to characterize travel choice behaviors using the implicit price instead of the indirect utility. The choice criterion to compare the implicit prices of available trip options was developed from the utility maximization problem of a trip maker which is supposed to choose the best option from the available ones differentiated by only by the quantitative attributes such as travel cost and time but also by qualitative attributes such as comfort and safety. The utility maximization problem is constructed under household production theory, and is incorporated with a special kind of joint homogeneous production functions. The implicit price of a certain trip option is the sum of the monetary price and the multiple of travel time and the value-of-travel-time, and the value-of-travel-time refers to the portion of wage, which can be assignable to the trip-making activity. This choice criterion is statistically identifiable, and behaviorally plausible. Moreover, this criterion has the expression simpler than the indirect utility, and therefore could be an effective target of the statistical estimation for travel choice behaviors.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.2
/
pp.239-245
/
2012
This paper proposes a novel optimum design method for the PID controller of magnetic levitation-based Rail-Guided Vehicle(RGV) by a genetic algorithm using clone selection method and a new performance index function with performances of both time and frequency domain. Generally, since an attraction type levitation system is intrinsically unstable and requires a delicate controller that is designed considering overshoot and settling time, it is difficult to completely satisfy the desired performance through the methods designed by conventional performance indexes. In the paper, the conventional performance indexes are analyzed and then a new performance index for Maglev-based RGV is proposed. Also, an advanced genetic algorithm which is designed using clonal selection algorithm for performance improvement is proposed. To verify the proposed algorithm and the performance index, we compare the proposed method with a simple genetic algorithm and particle swarm optimization. The simulation results show that the proposed method is more effective than conventional optimization methods.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.5A
/
pp.836-845
/
2001
본 논문에서는 시간 선택성 다중경로 이동 무선 채널을 다양한 방법으로 모델링 하고 그에 따른 여러 가지 특성평가를 제시하였다. 모델링 방법에는 Jakes 방식과 시간 영역에서 독립적인 두 개의 가우시안 잡음 발생기와 정형필터(shaping filter)를 사용하는 방식 및 주파수 영역에서 필터링 하는 방식이 있다. 이 세 가지 모델링 방법의 성능을 진폭의 자기상관함수, 상호상관함수, 누적분포함수(Cumulative Distribution Function), 레벨 교차율(Level Crossing Rate), 평균 페이딩 지속 시간(Average Duration of Fades), 위상차의 확률 밀도, 위상차의 자기상관함수 등의 측면에서 시뮬레이션하고 그 결과치와 이론치 간의 특성 비교를 제시하였다. 특히, 확산 대역 시스템을 고려했을 때 이상적인 채널 추정을 가정한 레이크 수신기에서의 BER 성능을 다중경로 개수에 따라 보임으로써 여러 가지 채널 모델링 중에서 주파수 영역에서 필터링 하는 방식이 이동 무선 채널을 모델링 하는데 있어 가장 적합하다는 것을 보였다. 마지막으로 비대칭 도플러(Doppler) 스펙트럼을 모델링 하는 것도 주파수 영역에서 필터링 하는 방식이 편리하다.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.6
/
pp.575-583
/
2000
본 논문에서 임의의 데이터가 입력되면 기준 영상 중에서 가장 유사도가 큰 영상을 찾아 국부 승리자로 선택하고, 그 국부 승리자 중에서 전체 승리자를 선택하여 최종 출력값을 얻는 계층적 FGNN(Fuzzy Genetic Neural Network)을 제안하고, 이에 하이브리드 퍼지 소속함수와 유전자 알고리즘을 적용하였다. 하이브리드 퍼지 소속함수는 입력 값을 0~1 사이의 값으로 함으로써 시스템의 속도를 빠르게 하고 유전자 알고리즘을 입력값을 일정한 오차 이내로 하여 최적의 영상을 얻도록 하였다. 위의 계층적 FGNN 알고리즘을 회로 설계 및 검증하였다. 또한 제안한 FGNN을 이용하여 영상에 포함된 잡음을 제거하고, 이와 유사한 구조를 가진 FDNN(Fuzzy Decision Neural Network) 성능보다 FGNN의 성능이 우수함을 여러 가지 영상을 통하여 확인하였다. 또한 모의 실험 결과 영상에 대한 평균자승오차(MSE : Mean Square Error)를 비교하였으며, 그 결과 하이브리드 퍼지 함수와 유전자 알고리즘을 적용한 FGNN이 메디안 필터, OC, CO, FDNN 등에 비해 우수함을 확인하였다. FGNN 알고리즘을 Top-Down 방식으로 VHDL(VHSIC Hardware description Language)을 이용하여 코딩(Coding)하고, Synopsys 툴을 이용하여 하드웨어를 설계하였다. 이 알고리즘의 하드웨어는 총 5개의 블록으로 가지고 있고 각각의 블록은 파이프라인 형태로 구성하고, 이는 Synopsys 툴을 이용하여 동작 및 성능을 검증하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.27
no.1
/
pp.103-108
/
2023
We study the problem of selecting a subset of sensor nodes in sensor networks in order to maximize the performance of parameter estimation. To achieve a low-complexity sensor selection algorithm, we propose a greedy iterative algorithm that allows us to select one sensor node at a time so as to maximize the log-determinant of the inverse of the estimation error covariance matrix without resort to direct minimization of the estimation error. We apply QR factorization to the observation matrix in the log-determinant to derive an analytic selection rule which enables a fast selection of the next node at each iteration. We conduct the extensive experiments to show that the proposed algorithm offers a competitive performance in terms of estimation performance and complexity as compared with previous sensor selection techniques and provides a practical solution to the selection problem for various network applications.
Yoon, Dong Jin;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
Smart Media Journal
/
v.10
no.3
/
pp.39-47
/
2021
Enhanced index tracking is a problem of optimizing the objective function to generate returns above the index based on the index tracking that follows the market return. In order to avoid problems such as large transaction costs and illiquidity, we used a method of constructing a portfolio by selecting only some of the stocks included in the index. Commonly used enhanced index tracking methods tried to find the optimal portfolio with only one objective function in all tested periods, but it is almost impossible to find the ultimate strategy that always works well in the volatile financial market. In addition, it is important to improve generalization performance beyond optimizing the objective function for training data due to the nature of the financial market, where statistical characteristics change significantly over time, but existing methods have a limitation in that there is no direct discussion for this. In order to solve these problems, this paper proposes ensemble learning that composes a portfolio by combining several objective functions and a 3-stage portfolio selection algorithm that can select a portfolio by applying criteria other than the objective function to the training data. The proposed method in an experiment using the S&P500 index shows Sharpe ratio that is 27% higher than the index and the existing methods, showing that the 3-stage portfolio selection algorithm and ensemble learning are effective in selecting an enhanced index portfolio.
입체음향 시스템에서 모노음에 방향감을 제어하기 위한 방법으로 FIR 필터 형태의 머리전달함수( HRTF : Head-Related Transfer Function)를 사용한다. 그러나 이때 사용되는 FIR형태의 머리전달함수는 높은 차수를 가지고 있어 실시간 음상정위 처리가 어려운 문제점을 가지고 있다. 본 논문에서는 FIR 형태의 머리전달함수를 ARMA 시스템 인지기법을 이용하여 저차의 IIR필터 형태로 모델링하여 실시간 데이터 처리가 가능하도록 하였다. 본 논문에서 제안하는 ARMA 시스템 인지기법을 이용하게 되면 주어진 고차의 FIR형태의 머리전달함수를 다양한 안정성을 갖는 IIR모델들을 얻을 수 있으며, 이들 중 적절한 스펙트럼오차를 갖는 저차의 IIR모델을 선택 할 수 있다.
In this paper, a new form of linear models referred to as generalized weighted linear models is proposed. The proposed models assume that the relationship between the response variable and explanatory variables can be modelled by a distribution function of the response mean and a weighted linear combination of distribution functions of covariates. This form addresses a structural problem of the link function in the generalized linear models in which the parameter space may not be consistent with the space derived from linear predictors. The maximum likelihood estimation with Lagrange's undetermined multipliers is used to estimate the parameters and resampling method is applied to compute confidence intervals and to test hypotheses.
함수형 프로그래밍 언어는 전통적인 프로시저형 언어에 비하여 많은 장점이 있다. 그러나 함수 언어 프로그래머를 위한 실용적인 디버깅 환경은 상대적으로 빈약하다. 그동안 유용한 디버거 구현을 위해서 많은 시도가 있었고, 그 결과로 하향식 기법으로 이용한 알고리즈믹 디버거와 상향식 기법을 이용한 레덱스 트레일 디버거가 연구되었다. 두가지 기법은 모두 실제 프로그래밍에 적용하기에는 유지해야 하는 디버깅 정보의 양이 많다는 단점이 있다. 이 논문에서는 선택적 레덱스 트레일 디버깅 방법을 제안한다. 이 방법을 이용하면 디버거 사용자는 프로그램에서 오류가 예상되는 부분에 포커스를 설정할 수 있고 단지 선택된 부분에 한하여 트레일을 생성하게 된다. 이 방법은 프로그램의 오류에 대한 디버거 사용자의 예측을 반영하고 디버깅에 필요한 정보의 양을 줄이는 장점이 있다. 구현된 디버깅 시스템은 선택적 레덱스 트레일을 생성하는 추상기계와 실제 디버깅이 이루어지는 레덱스 트레일 탐색기로 구성된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.