• Title/Summary/Keyword: 선택적 학습률

Search Result 94, Processing Time 0.026 seconds

Modeling of plasma etch process using genetic algorithm optimization of neural network initial weights (유전자 알고리즘-응용 역전파 신경망 웨이트 최적화 기법을 이용한 플라즈마 식각 공정 모델링)

  • Bae, Jung-Gi;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.272-275
    • /
    • 2004
  • 플라즈마 식각공정은 소자제조를 위한 미세 패턴닝 제작에 이용되고 있다. 공정 메커니즘의 정성적 해석, 최적화, 그리고 제어를 위해서는 컴퓨터 예측모델의 개발이 요구된다. 역전파 신경망 (backpropagation neural network-BPNN) 모델을 개발하는 데에는 다수의 학습인자가 관여하고 있으며, 가장 그 최적화가 어려운 학습인자는 초기웨이트이다. 모델개발시, 초기웨이트는 random 값으로 설정이 되며, 이로 인해 초기웨이트의 최적화가 어렵다. 본 연구에서는 유전자 알고리즘 (genetic algorithm-GA)을 이용하여 BPNN의 초기웨이트를 최적화하였으며, 이를 식각공정 모델링에 적용하여 평가하였다. 실리카 식각공정 데이터는 $2^3$ 인자 실험계획법을 이용하여 수집하였으며, GA에 관여하는 두 확률인자의 영향을 42 인자 실험계획법을 이용하여 최적화 하였다. 종래의 모델에 비해, 최적화된 모델은 실리카 식각률, Al 식각률, Al 선택비, 그리고 프로파일 응답에 대해서 각 기 24%, 13%,, 16%, 그리고 17%의 향상률을 보였다. 이는 제안된 최적화 기법이 플라즈마 모델의 예측성능을 증진하는데 효과적으로 응용될 수 있음을 의미한다.

  • PDF

N-tuple classifier for effective face recognition (얼굴 인식에 효과적인 n-tuple classifier)

  • Han Woo-Yeon;Nam Mi-Young;Rhee Phill-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.915-918
    • /
    • 2004
  • 얼굴 인식을 위한 명도값 매칭 알고리즘들 중에서도 Continuous n-tuple classifier는 tuple의 무작위적 추출을 기본으로 하여 만들어 졌다. 무작위적 추출은 단순성과 빠른 속도 등의 장점에 반해 인식의 성능의 가변성을 단점으로 갖는다. 그리고 학습 데이터 추출 방법의 변화에 따른 인식률 변화라는 문제점이 있다. 본 논문에서는 무작위적 추출이 가지는 여러 가지 약점을 보완하기 위해서, 유전 알고리즘을 이용하여 얼굴 인식에 효과적인 tuple을 선택하여 사용하였다. 유전 알고리즘을 이용함으로서 얼굴 인식에 효과적인 tuple의 필터링 효과를 기대할 수 있다. 또한 학습 데이터 추출 방법의 변화에 따른 인식 성능의 향상을 확인할 수 있었다.

  • PDF

A Routing Algorithm based on Deep Reinforcement Learning in SDN (SDN에서 심층강화학습 기반 라우팅 알고리즘)

  • Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1153-1160
    • /
    • 2021
  • This paper proposes a routing algorithm that determines the optimal path using deep reinforcement learning in software-defined networks. The deep reinforcement learning model for learning is based on DQN, the inputs are the current network state, source, and destination nodes, and the output returns a list of routes from source to destination. The routing task is defined as a discrete control problem, and the quality of service parameters for routing consider delay, bandwidth, and loss rate. The routing agent classifies the appropriate service class according to the user's quality of service profile, and converts the service class that can be provided for each link from the current network state collected from the SDN. Based on this converted information, it learns to select a route that satisfies the required service level from the source to the destination. The simulation results indicated that if the proposed algorithm proceeds with a certain episode, the correct path is selected and the learning is successfully performed.

3-stage Portfolio Selection Ensemble Learning based on Evolutionary Algorithm for Sparse Enhanced Index Tracking (부분복제 지수 상향 추종을 위한 진화 알고리즘 기반 3단계 포트폴리오 선택 앙상블 학습)

  • Yoon, Dong Jin;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 2021
  • Enhanced index tracking is a problem of optimizing the objective function to generate returns above the index based on the index tracking that follows the market return. In order to avoid problems such as large transaction costs and illiquidity, we used a method of constructing a portfolio by selecting only some of the stocks included in the index. Commonly used enhanced index tracking methods tried to find the optimal portfolio with only one objective function in all tested periods, but it is almost impossible to find the ultimate strategy that always works well in the volatile financial market. In addition, it is important to improve generalization performance beyond optimizing the objective function for training data due to the nature of the financial market, where statistical characteristics change significantly over time, but existing methods have a limitation in that there is no direct discussion for this. In order to solve these problems, this paper proposes ensemble learning that composes a portfolio by combining several objective functions and a 3-stage portfolio selection algorithm that can select a portfolio by applying criteria other than the objective function to the training data. The proposed method in an experiment using the S&P500 index shows Sharpe ratio that is 27% higher than the index and the existing methods, showing that the 3-stage portfolio selection algorithm and ensemble learning are effective in selecting an enhanced index portfolio.

A Study on Learning Achievement Gap in the Secondary Curriculum in Accordance with the Teaching Methods of Materials Processing Section (중등교과에서 재료가공 단원의 수업방법에 따른 학습 성취도 차이에 관한 연구)

  • Kim, Ji-Hye;Lee, Jongkil
    • Journal of Practical Engineering Education
    • /
    • v.7 no.2
    • /
    • pp.107-112
    • /
    • 2015
  • In this paper, it was investigated academic achievement whether any differences in accordance with the teaching methods in the materials processing section in 'technology and home economics' curricular. Target groups were compared to the eighth grade and ninth grade junior high school. Both eighth and ninth grade were selected for the first time learning the material processing section. The eighth grade was lessoned using the educational media, but the ninth grade was lessoned using writing. The results from the six questions, in one educational media utilization class got 71.1% correct answers, the other groups got 45.3% correct answers. The average percent correct differences between the two groups showed 25.8% points improvement in academic achievement.

A Study on Efficient User Retrieval Feedback for Component Reuse (컴포넌트 재사용을 위한 효율적인 사용자 검색 피드백에 관한 연구)

  • Han Jung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.379-384
    • /
    • 2006
  • The paper describes a method of user feedback in order to enhance the retrieval effectiveness. In this paper, to overcome a weak point of the existing feedback function adapting fuzzy technique, we proposed the interaction function using gaussian function that gives different learning rate according to choice of components with same function. And, we grade degree that the user opinion is reflected to a system by applying user profile to the feedback function. User retrieval feedback method is adaptive retrieval method that makes a slow change for a long time using feedback function adapting gaussian function and user profile.

  • PDF

Emotion Recognition Method using Physiological Signals and Gesture (생체 신호와 몸짓을 이용한 감성인식 방법)

  • Kim, Ho-Deok;Yang, Hyeon-Chang;Park, Chang-Hyeon;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.25-28
    • /
    • 2007
  • Electroencephalograhic(EEG)는 심리학의 영역에서 인간 두뇌의 활동을 측정 기록하는데 오래 전부터 사용하였다. 과학의 발달함에 따라 점차적으로 인간의 두뇌에서 감정을 조절하는 기본적인 영역들이 밝혀지고 있다. 그래서 인간의 감정을 조절하는 인간의 두뇌 활동 영역들을 EEG를 이용하여 측정하였다. 본 논문에서는 EEG의 신호들과 몸짓을 이용해서 감정을 인식하였다. 특히, 기존에 생체신호나 몸짓 중 한 가지만을 이용하여 각각 실험해서 감성을 인식하였지만, 본 논문에서는 EEG 신호와 몸짓을 동시에 이용해서 피 실험자의 감성을 인식하는 실험을 하였다. 실험결과 기존의 생체신호나 몸짓 한 가지만을 가지고 실험했을 때의 인식률 보다 더 높은 인식률을 보임을 알 수 있었다. 그리고 생체신호와 몸짓들의 특징 신호들은 강화학습의 개념을 이용한 IFS(Interactive Feature Selection)를 이용하여 특징 선택을 하였다.

  • PDF

Post-processing for Korean OCR Using Cohesive Feature between Syllables and Syntactic Lexical Feature (한국어의 음절 결합 특성 및 통사적 어휘 특성을 이용한 문자인식 후처리 시스템)

  • Hwang, Young-Sook;Park, Bong-Rae;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.175-182
    • /
    • 1997
  • 지금까지의 한글 문자인식 후처리 연구분야에서 미등록어와 비문맥적 오류 문제는 아직까지 잘 해결하지 못하고 있는 문제이다. 본 논문에서는 단어로서 가능한지를 결정하는 기준으로 확률적 음절 결합 정보를 사용하여 형태소 분석 기법만을 사용했을 때 발생할 수 있는 미등록어 문제를 해결하고, 통사적 기능의 어말 어휘를 고려한 문맥 결합 정보를 이용함으로써 다수의 후보 어절 가운데에서 최적의 후보 어절을 선택하는 방법을 제안한다. 제안된 시스템은 인식기에서 내보낸 후보 음절과 학습된 혼동 음절을 조합하여 하나 이상의 후보 어절을 생성하는 모듈과 통계적 언어 정보를 이용하여 최적의 후보 어절을 선정하는 모듈로 구성되었다. 실험은 1000만 원시 코퍼스에서 추출한 음절 결합 정보와 17만 태깅된 코퍼스에서 추출한 어절 결합 정보를 사용하였으며, 실제 인식 결과에 적용한 결과 문자 단위에서는 94.1%의 인식률을 97.4%로, 어절 단위에서는 87.6%를 96.6%로 향상시켰다. 교정률과 오교정률은 각각 문자 단위에서 56%와 0.6%, 어절 단위에서 83.9%와 1.66%를 보였으며, 전체 실험 어절의 3.4%를 차지한 미등록어 중 87.5%를 올바로 인식하는 한편, 전체 오류의 20.3%인 비문맥 오류에 대해서 91.6%를 올바로 교정하는 후처리 성능을 보였다.

  • PDF

Valuation of Air Quality in the Metropolitan Seoul (3중양분선택·개방형 CVM을 이용한 수도권 대기질의 편익가치)

  • Rhee, Hae-Chun;Chung, Hyun-Sik;Kim, Tae-Yung
    • Environmental and Resource Economics Review
    • /
    • v.13 no.3
    • /
    • pp.387-415
    • /
    • 2004
  • This paper is intended to valuate air quality of the Seoul Metropolitan Area using triple-bound dichotomous choice (TBDC) contingent valuation method (CVM), supplemented by open-ended (OE) questionnaires. In the OE questionnaires, some respondents would state their willingness to pay (WTP) outside the limits of the WTP interval. It implies that WTP estimates based on the customary dichotomous choice (DC) questionnaires can be biased. We argue that the TBDC-CVM refined with OE questions is more efficient, because the latter helps purge the former of corrupted data that may have been collected by the TBDC interview process.

  • PDF

An analysis of Earth Science Items and Achievement in TIMSS 2003 (TIMSS 2003 지구과학 영역 문항 및 성취도 분석)

  • Kwak, Young-Sun;Jeong, Eun-Young
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.405-414
    • /
    • 2007
  • This study examined students' achievement of Earth science in the Trends in International Mathematics and Science Study (TIMSS) that was conducted with 46 participating countries in 2003 and analyzed average percent-correct items for Earth science were analyzed in terms of subcategory, item type and cognitive domain. In addition, items showing a gender difference and a big difference in the test scores of Korean and international students were analyzed. Korean students performed higher than the international average, especially in the astronomy-related topic and in the cognitive domain of 'reasoning and analysis'. In an analysis of the five items that Korean students scored lower than the international average, Korean students performed not so well in demonstrating what they understood with drawings and writings. Korean female students showed a difficulty more than male students did in multiple-choice items that asked recalling of factual knowledge and demonstrated lack of confidence in the items that they have not learned yet. Based on the result content organization of Earth science curriculum and ways to improve teaching and loaming methods were recommended.