• Title/Summary/Keyword: 선택적 산화 촉매

Search Result 160, Processing Time 0.026 seconds

Highly dispersed $Ru/{\alpha}-Al_2O_3$ Catalyst development for selective CO oxidation reaction (선택적 CO 산화반응을 위한 고분산된 $Ru/{\alpha}-Al_2O_3$ 촉매개발)

  • Eom, HyunJi;Koo, KeeYoung;Jung, UnHo;Rhee, YoungWoo;Yoon, WangLai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.228.1-228.1
    • /
    • 2010
  • 선택적 CO 산화반응(PrOx)을 위한 Ru이 고분산 담지된 $Ru/{\alpha}-Al_2O_3$ 촉매를 증착-침전법(deposition-precipitation)으로 제조하였다. 용액의 pH와 aging 시간에 따른 Ru 입자의 크기 변화와 분산도의 영향을 살펴보았으며 함침법(impregnation)으로 비교 촉매를 제조하였다. 촉매의 특성분석은 BET, TPR, CO-Chemisorption분석을 수행하여 촉매의 비표면적, 환원특성, 분산도를 알 수 있었다. 특성분석결과, 증착-침전법으로 제조한 $Ru/{\alpha}-Al_2O_3$ 촉매가 함침법으로 제조한 촉매에 비해 분산도가 높았으며, pH별 촉매 제조에서는 pH6.5로 제조한 촉매가 22.06%로 가장 높은 분산도를 보였다. 또한, 담체의 비표면적 영향에 따른 Ru 입자의 분산도를 살펴보기 위해 ${\gamma}-Al_2O_3$${\alpha}-Al_2O_3$ 담체를 적용한 결과, 비표면적이 작은 ${\alpha}-Al_2O_3$ 담체 표면에서 Ru 분산도가 ${\gamma}-Al_2O_3$ 담체에 비해 높았다. 이는 기공이 발달하여 비표면적이 넓은 ${\gamma}-Al_2O_3$ 담체는 소량의 Ru을 고분산 담지 시 담체 표면보다는 기공 내에 담지 되는 양이 많아 실제 반응 시 반응에 참여하는 표면 활성 금속양이 적음을 알 수 있다. 특히, 선택적 산화반응과 같이 표면에서 빠른 반응이 일어나는 경우, 기공 내부의 활성금속이 반응에 참여하기 어려워 반응 활성이 낮음을 PrOx 반응실험을 통해 확인할 수 있었다. PrOx test 조건은 GHSV 250000~60000, 온도는 80~200도, 람다값은 2~4로 성능 비교하여 실험 하였다. PrOx의 성능평가 결과 담체를 ${\alpha}-Al_2O_3$를 사용하여 deposition-precipitation방법으로 제조한 pH6.5 촉매에서 $100{\sim}160^{\circ}C$에서 90%의 가장 높은 CO conversion을 가지고 18%의 선택도를 가졌다.

  • PDF

A Study on Highly Dispersed Pt/$Al2O_3$ Catalyst for Preferential CO Oxidation (고분산 담지된 Pt/$Al2O_3$ 촉매의 선택적 CO 산화반응 특성에 관한 연구)

  • Kim, Ki Hyeok;Koo, Kee Young;Jung, UnHo;Roh, Hyeon Seog;Yoon, Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.157.1-157.1
    • /
    • 2011
  • 선택적 CO 산화반응(PrOx)에 사용되는 촉매 중 Pt, Ru, Rh 등의 귀금속 계 촉매들은 비귀금속 계 촉매에 비해 활성이 좋은 반면 가격이 비싸다는 경제적인 제한점이 있다. 따라서 소량의 귀금속을 사용하여 높은 활성의 촉매를 제조하고자 활성금속의 고분산 담지 방법에 대한 연구가 이루어지고 있다. 본 연구에서는 담체인 ${\gamma}-Al_2O_3$ 표면에 활성금속인 Pt의 고분산 담지를 위해 증착-침전법(Deposition-precipitation)을 적용하였으며 용액의 pH 변화에 따른 Pt 금속 입자의 분산도에 대한 영향을 살펴보았다. Pt의 함량은 1wt%로 고정하였고 침전제로 NaOH를 사용하여 용액의 pH를 pH 7.5 ~ 10.5로 변화시켰다. 제조된 촉매는 세척 후 $400^{\circ}C$, 3시간 소성 하였다. 제조된 1wt% Pt/$Al_2O_3$ 촉매의 특성분석을 위해 BET, TPR, CO-chemisorption을 수행하였다. PrOx 반응 실험은 GHSV=60,000 $ml/g_{cat}{\cdot}h$, $T=100{\sim}200^{\circ}C$, ${\lambda}$=4 조건에서 수행되었으며 반응 전에 촉매는 $400^{\circ}C$, 3시간 환원 후 사용하였다. 촉매의 특성분석과 PrOx 반응 실험 결과를 통해 촉매가 담체 위에 고분산 되는 최적의 pH를 확인할 수 있었으며, 기존의 함침법으로 제조된 촉매와 성능 비교를 통해 제조방법에 따른 영향을 살펴보았다.

  • PDF

Studies on the Selective Oxidation of Niobium Containing Mixed Metal Oxide Catalysts (니오비움 함유 복합 금속산화물 촉매의 선택산화반응에 관한 연구)

  • Kim, Young-Chul;Kim, Hyeong-Ju;Moon, Dong-Ju
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.129-134
    • /
    • 1998
  • Conversion of propane to acrylonitrile via ammoxidation was studied using physically mixed catalysts composed of $Nb_2O_5(10{\sim}30wt%)$ and $V_{0.4}Mo_1Te_{0.1}$. Catalytic activities of ammoxidation were improved by adding strong acidic niobium oxide to $V_{0.4}Mo_1Te_{0.1}$, the selectivities to acrylonitrile+propylene being remained constant. The maximum activity was obtained at the mixing ratio 25wt% niobium oxide in $Nb_2O_5-V_{0.4}Mo_1Te_{0.1}$. Niobium oxide was found to be a selective catalyst for the oxidative dehydrogenation of propane.

  • PDF

Preparation of Mo-Bi-V-Al Mixed Oxide Catalysts and Its Application to Methanol Synthesis by Partial Oxidation of Methane (Mo-Bi-V-Al 복합 산화물 촉매의 제조와 메탄 부분산화에 의한 메탄올 합성반응에 응용)

  • Park, Eun-Seok;Shin, Ki-Seok;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • This study was aimed at the development of catalysts for the direct methanol synthesis by partial oxidation of methane. Mo-Bi-V-Al mixed oxide catalysts were prepared and characterized and used in the direct methanol synthesis reaction. The catalysts prepared by the sol-gel method had much larger surface areas than those prepared by the co-precipitation method. The larger the surface area was, the less the methanol selectivity was. The catalysts having larger surface area facilitate the complete oxidation of methane, decreasing the selectivity of methanol. The catalysts prepared by the sol-gel method showed higher methanol selectivity of 13% at $20^{\circ}C$ lower temperature than those prepared by the co-precipitation method. Through XRD analysis, it was revealed that the structures of the catalysts prepared by the two methods were different. In the reaction, methanol selectivity increased and carbon dioxide selectivity decreased with pressure due to the suppression of complete oxidation reaction at a high pressure.

Preparation of CuO-CeO2 mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO (졸-겔법에 의한 CuO-CeO2 복합 산화물 촉매의 제조 및 CO의 선택적 산화반응에 응용)

  • Hwang, Jae-Young;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.883-891
    • /
    • 2017
  • For the preferential oxidation of CO contained in the fuel of polymer electrolyte membrane fuel cell (PEMFC), CuO-$CeO_2$ mixed oxide catalysts were prepared by the sol-gel and co-precipitation methods to replace noble metal catalysts. In the catalyst preparation by the sol-gel method, Cu/Ce ratio and hydrolysis ratio were changed. The catalytic activity of the prepared catalysts was compared with the catalytic activity of the noble metal catalyst($Pt/{\gamma}-Al_2O_3$). Among the catalysts prepared with different Cu/Ce ratios, the catalyst whose Cu/Ce ratio was 4:16 showed the highest CO conversion (90%) and selectivity (60%) at $150^{\circ}C$. As the hydrolysis ratio was increased in the catalyst preparation, surface area increased, and catalytic activity also increased. The highest CO conversions with the CuO-$CeO_2$ mixed oxide catalyst prepared by the co-precipitation method and the noble metal catalyst (1wt% $Pt/{\gamma}-Al_2O_3$) were 82 and 81% at $150^{\circ}C$, respectively, whereas the highest CO conversion with the CuO-$CeO_2$ mixed oxide catalyst prepared by the sol-gel method was 90% at the same temperature. This indicates that the catalyst prepared by the sol-gel method shows higher catalytic activity than the catalysts prepared by the co-precipitation method and the noble metal catalyst. From the CO-TPD experiment, it was found that the catalyst having CO desorption peak at a lower temperature ($140^{\circ}C$) revealed higher catalytic activity.

Development of Cu-CeO2 Catalysts for Selective Oxidation of CO (일산화탄소의 선택적 산화반응을 위한 Cu-CeO2 촉매의 개발)

  • Jung, C.-R.;Han, J.;Yoon, S.P.;Nam, S.-W.;Lim, T.-H.;Hong, S.-A.;Lee, H.-I.
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • $Cu-CeO_2$ catalysts were prepared by co-precipitation and liquid phase oxidation (CP-LPO) and the prepared catalysts were examined as selective oxidation of carbon monoxide catalysts for the application of fuel cell vehicles. The prepared $Cu-CeO_2$ catalysts showed high reaction activity, but it was hard to find the correlation between the amount of Cu loaded and the reaction activities. As increase of the amount of Cu loaded, the micro pore structure of the catalyst was changed. It is due to the formation of solid solution between Cu and $CeO_2$. During pretreatment, the catalyst formed the solid-solution of Cu-Ce-O, resulting in the improvement of catalytic activity.

  • PDF

Selective Catalytic Oxidation of Ammonia over Noble Catalysts Supported on Acidic Fe-ZSM5 Supports (산성 Fe-ZSM5 담체에 담지된 귀금속 촉매를 활용한 암모니아의 선택적 산화반응)

  • Kim, Min-Sung;Lee, Dae-Won;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.89-94
    • /
    • 2012
  • In this study, we investigated the activity of Pd and Pt supported on acidic Fe-ZSM5 supports for selective catalytic oxidation of ammonia ($NH_3$-SCO). Among the catalysts, Pt/Fe-ZSM5 catalyst exhibited superior $NH_3$-SCO activity to Pd/Fe-ZSM5 catalyst. We also tested Pt/Fe-ZSM5 catalysts with different Fe loading using ion-exchange method to prepare Fe-ZSM5 supports, which resulted in the increased catalytic performance with smaller Fe content: $NH_3$ was oxidized completely at low temperature ($250^{\circ}C$). The physicochemical properties of Fe-ZSM5 were investigated to figure out the relationship between the characteristics of the catalysts and the catalytic activity on $NH_3$-SCO by Inductively coupled plasma-atomic emissions spectrometer (ICP-AES), $N_2$ sorption, X-ray diffraction (XRD), temperature programmed desorption of $NH_3$ ($NH_3$-TPD) technique.

Direct Methanol Synthesis by Partial Oxidation of Methane (메탄의 부분산화에 의한 메탄올 직접 합성)

  • Kim, Young-Kook;Lee, Kwang-Hyeok;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.649-655
    • /
    • 2013
  • Methanol was directly produced by the partial oxidation of methane with perovskite and mixed oxide catalysts. Perovskite ($ABO_3$) catalysts were prepared by the malic acid method with changing A and B site components. Three-component mixed oxide catalysts that have Mo and Bi as a main component were prepared by the co-precipitation method. Among the perovskite catalysts, $SrCrO_3$ showed the highest methanol selectivity of 11% at $400^{\circ}C$. For the three-component mixed oxide catalysts, there were no remarkable changes in methane conversion. Among the mixed oxide catalysts, Mo-Bi-Cr mixed oxide catalyst showed the highest methanol selectivity of 15.3% at $400^{\circ}C$. The catalytic activity and methanol selectivity of the three-component mixed oxide catalysts were directly proportional to the surface area of the catalysts.

Oxygen Permeation Properties of Vanadium coated inorganic membrane (바나듐 무기막의 산소투과 특성)

  • 문상진;정지훈;홍석인
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.54-55
    • /
    • 1995
  • 무기막은 고분자막에 비해서 고온에서의 사용이 가능하고 구조적 안정성 등이 우수한 특징이 있다. 이러한 무기막에 촉매를 담지하거나 코팅하여 분리막의 역할과 촉매로서의 역할을 동시에 수행하는 막반응기로의 응용이 가능하다. 본 연구에서는 Redox mechanism에 의한 부분산화반응을 일으키는 촉매인 오산화바나듐을 sol-gel법으로 코팅한 무기막을 제조하여, 막내부에 오산화바나듐의 격자산소를 이용하는 부분산화 반응물이 존재할 때 선택적으로 증가하는 산소의 투과특성을 조사하였다.

  • PDF

Effect of Tungsten on Selective Oxidation of Acrolein with Mo-V-W-O Mixed Oxide Cataysts (Mo-V-W-O 촉매상에서 아크로레인의 선택산화반응에 대한 텅스텐의 영향)

  • Na, Suk-Eun;Park, Dae-Won;Chung, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.308-317
    • /
    • 1993
  • The study is related to the synthesis of acrylic acid by selective oxidation of acrolein on Mo-V-W multicomponent mixed oxide catalysts. Mo-V-W-O(WVM), Mo-V-O/Mo-W-O(VM/WM), Mo-W-O/Mo-V-O(WM/VM) and mechanical mixtures of Mo-V-O and Mo-W-O(M-VM+WM) were prepared and characterized by BET, XRD, SEM and EPMA. Catalytic activity of these catalysts was tested in a continuous fixed bed reactor. In WVM catalysts small amount of tungsten added to VM increased surface area and selectivity of acrylic acid, but excess amount of tungsten decreased reaction rate of acrolein and selectivity. VM/WM catalysts, VM supported on WM, showed higher activity and selectivity than WM/VM catalysts where WM is supported on VM. Phase cooperation between WM and VM was observed in mechanical mixture of WM and VM and they showed higher yield than WM or VM.

  • PDF