• Title/Summary/Keyword: 선택적 레이저 소결법

Search Result 10, Processing Time 0.026 seconds

Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication (나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황)

  • Ko, Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.533-538
    • /
    • 2011
  • A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed.

Development of Precision Casting Technology for Inlet Gear Box using Selective Laser Sintering (선택적 레이저 소결법을 이용한 기어박스의 정밀주조기술개발)

  • 김천기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • In this paper rapid prototyping and precision casting technology have been developed for the manufacturing of inlet gear box of an airplane, Rapid prototyping is a new prototyping technology that produces complicated parts directly from three-dimensional CAD data with a high efficiency and has been extensively applied to various manufacturing processes. In the present work Selective Lase Sintering(SLS) system is utilized in order to manufacture prototype of the inlet gear box. Prototyping technology using SLS is also investigated from the viewpoint of accuracy. Using the SLS master the casting products are manufactured through several processes such as : vacuum casting lost wax shell casting and investment cast-ing. The shrinkage characteristics of wax and cast iron in the casting procedures are considered and then reflected to the design procedure so that the accuracy of the product is improved consequently.

  • PDF

Selective Laser Sintering by ${\CO_2}$ Laser (${\CO_2}$ 레이저에 의한 선택적 소결법)

  • 전병철;김재도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.18-25
    • /
    • 1998
  • A prototyping process based on the technique of selective ${\CO_2}$ laser sintering has been carried out using bronze powder. The integration of a ${\CO_2}$ laser and a working table to create the opto-mechanical system has been constructed for making the multi-layer sintering. Three dimensional rapid prototyping process which has used the 40W ${\CO_2}$ laser and bronze powder has been investigated experimentally The optimal scanning method has been found to minimize the deflection and distortion by using the thermal strain method which the laser scans in the x and v directions repeatedly. The method of spreading powder has been improved by using the rubber knife of which the flexibility causes less wave of spreading powder.

  • PDF

A Study on Selective Sintering System using CO2 Laser (CO2 레이저를 이용한 Selective Sintering System에 대한 연구)

  • 전병철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.181-185
    • /
    • 1996
  • Rapid prototyping is becoming an increasingly importnat techniuqe involved in the design cycles of modern industry. The majority of the rapid prototyping systems currently available use photo-reactive resins and waxes as the raw materials. The models produced by these systems often have relatively poor mechanical and physical properties and as such have a limited application to the production of advance prototypes but are excellently suited to the manufacture of engineering prototyes. This work identifies the need to produed near production grade advance prototypes from a variety of metals and a novel prototyping process based on the techniques of selective laser sintering and conventional machining is proposed. The integration of a carbon dioxide laser and a conventional machine tool to create the opto-mechanical by multi-layer sintering and some of the problems involved are also discussed.

  • PDF

Determination of Part Orientation and Packing in SLS Process (SLS에서의 자동적인 조형자세 및 배치 결정에 관한 연구)

  • Hur, Sung-Min;Chang, Pok-Keun;Choi, Kyung-Hyun;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.139-147
    • /
    • 1999
  • Rapid Prototyping has made a drastic change in all industries which needs to reduce the time for the development of new products. Orientation and packing in rapid prototyping is considered as the most important factors to maximize the utilization of space in the build chamber and reduce build time. However, the decision of these parameter is mainly dependant on the operators's experience. This paper presents the methodology to find the optimal build layout considering an orientation and packing of multiple parts in SLS processing. Each part is represented as a voxel structure to deal with the inefficiency in a bounding box approach. Test results show that the adapted BL algorithm with a genetic algorithm(GA) can be applicable to a real industry.

  • PDF

A Study on the Manufacturing Rapid Prototype Using Bronze (Bronze를 이용한 쾌속조형제조에 대한 연구)

  • 전병철;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.204-209
    • /
    • 1995
  • The implementation of rapid prototyping technologies has been developed for automotive engineering by utilizing concurrent engineering principes integrated with slective laser sintering. The Selective Laser Sintering, in which a part is generated in layers form powder using a computer-controlled laser scanning apparatus and power feed system. An over view of the basic principles of SLS Machine operation is given. Binding mechanisms are described for power which becomes thermally activated bye the scanning laser beam; viscous flow and melting of a low-melting-point phase in powder. The production of parts from metal is described, including post processing to improve structural integrity and induce a transformation.

  • PDF

Measurement of the intrinsic speed of sound in a hot melt ceramic slurry for 3D rapid prototyping with inkjet technology (3차원 잉크젯 쾌속 조형법을 위한 세라믹 상변화 잉크의 음속측정)

  • Shin, Dong-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.892-898
    • /
    • 2008
  • 3D rapid prototyping is the manufacturing technology to fabricate a prototype with the data stored in a computer, which differs from conventional casting technology in terms of an additive process. Various 3D rapid prototyping techniques such as stereolithograpy. fused deposition modeling. selective laser sintering, laminated object manufacturing have been developed but among them, 3D inkjet printing has a unique feature that materials could be jetted to directly form the body of a prototype, which could be a finished product functionally and structurally. However, this needs ink with a high solid content, which tends to increase the dynamic viscosity of ink. The increase of ink viscositytends to restrict the jettable range of ink and hence the jetting conditions should be optimized. The intrinsic speed of sound in a hot melt ink with ceramic nanoparticles dispersed is one of key components to determine the jettable range of ink. In this paper, the way to measure the intrinsic speed of sound in a hot melt ceramic ink is proposed and its influence on the jetting condition is discussed.

A Study on Manufacturing Resin-based Blow Mold using SLS Parts and Forming Prototype-car Parts (SLS 조형품을 이용한 수지형 블로우 몰드 제작 및 시작차 부품성형에 관한 연구)

  • 양화준;황보중;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.124-131
    • /
    • 2000
  • Rapid Prototyping(RP) models are no longer used only for design verification. Currently, parts built utilizing layer manufacturing technology can be employed as functional prototypes and as patterns or tools for different manufacturing processes such as vacuum casting, investment casting, injection molding, precise casting and sand casting. This trend of Rapid Prototyping application meets the requirement of concurrent engineering and its range covers a more spreaded area. The aim of this paper is saving the manufacturing lead time and cost of plastic parts having hollow space shapes used by prototype-car. Using rapid prototype patterns, made by the Selective Laser Sintering(SLS) technique, a new approach of manufacturing resin-based blow mold is discussed. It has a great potential fur making prototype-car parts with the batch size of under 200 parts, in case of rapid modification due to a subsequent design changes in developing stage. So, the process proposed in this research shows reduction of process time and manufacturing cost when compared with the conventional process such as a Zinc Alloy fur Stamping(ZAS) mold.

  • PDF

고상반응법으로 제조한 Gd2MoO6:RE3+ (RE=Eu, Sm) 형광체의 특성

  • Im, Myeong-Hwan;Hong, Sun-Gi;Ryu, Hyeon-Tae;Lee, Eun-Gyeong;Sin, Yu-Hui;Jo, Sin-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.190.2-190.2
    • /
    • 2015
  • 최근에 최적의 모체 결정과 활성제 이온을 선택하여 우수한 발광과 흡광 특성을 갖는 산화물 형광체를 합성하여 디스플레이, 고체 레이저, 백색 발광 소자를 제작하는데 관심이 고조되고 있다. 본 연구에서는 열 및 화학적으로 안정한 $Gd_2MoO_6$를 모체 결정으로 선택하고 $Eu^{3+}$, $Sm^{3+}$ 이온을 활성제 이온으로 각각 도핑하여 다양한 종류의 색을 구현하는 새로운 종류의 형광체를 제조하고자 한다. 비교적 간단한 장비로 구성되고 볼밀 작업을 통하여 쉽게 초기 물질을 혼합 분쇄하고 소결할 수 있는 고상반응법을 사용하여 합성하였다. 특히, 모체 결정에 주입되는 활성제 이온을 둘러싸고 있는 국소적인 환경이 반전 대칭에서 벗어나는 정도를 파악하여 활성제 이온의 발광 파장의 세기가 최대가 되는 최적의 조건을 규명하고자 한다. $Eu^{3+}$ 이온이 도핑된 $Gd_2MoO_6$ 형광체의 발광 스펙트럼은 $Eu^{3+}$ 이온의 함량에 관계없이 모든 시료에서 전형적인 $Eu^{3+}$ 이온의 $^5D_0-^7F_j$ (j=1-4) 전이에 의한 발광 스펙트럼을 나타내었고, 가장 강한 적색 발광 파장은 611 nm에서 관측되었다. $Sm^{3+}$ 이온이 도핑된 $Gd_2MoO_6$ 형광체의 경우에, $Sm^{3+}$ 이온의 함량에 관계없이 모든 시료에서 $Sm^{3+}$ 이온의 $^4G_{5/2}-^6H_j$ (j=5/2, 7/2, 9/2) 전이에 의한 발광 스펙트럼을 나타내었고, 가장 강한 발광 파장은 616 nm에서 관측되었다. 이외에도, 결정 입자와 발광 세기의 상관 관계를 조사하였다.

  • PDF

Comparison of Shear Bond Strength of Veneer Ceramics to Co-Cr Alloys Produced by Selective Laser Melting and Casting Technique (선택적 레이저 용융 그리고 전통적인 주조 기술에 의해 제조된 Co-Cr 합금에 대한 전장용 세라믹의 전단 결합 강도 비교)

  • Hong, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.434-439
    • /
    • 2020
  • Selective laser melting (SLM) manufactures an alloy using laser as a heat source, and has recently been introduced in the dental industry. However, there is a lack of analytical research on metal-ceramic restorations achieved by SLM. This study evaluates and compares the metal-ceramic bond strength of Co-Cr alloys produced by selective laser melting and casting methods. Co-Cr samples required for this study were produced through the sintering process of ceramics, by applying the SLM and CAST methods. The metal-ceramic bond strength was measured by applying the shear bond strength test. In order to determine the area fraction of adherent ceramic, Si content of the specimen was measured using scanning electron microscopy SEM/ EDS. Results of the metal-ceramic bond strength and AFAC were analyzed by t-test (α = 0.05). No significant difference was observed comparing the bond strength of SLM and CAST Co-Cr alloys (P> 0.05). However, the SLM group had much better ceramic adherence than the CAST group (P < 0.001). Moreover, oxidation characteristics were similar for both SLM and CAST Co-Cr alloys, but metal structures were different. These results imply that although the bond of ceramic and Co-Cr alloy is not related to the manufacturing method, SLM alloys impart better ceramic adherence. This indicates that alloys made with SLM can be used to fabricate upper implant prostheses in the future. In particular, it is expected to overcome the shortcomings of the CAST method, and save time and cost.