• Title/Summary/Keyword: 선택적환원

Search Result 422, Processing Time 0.024 seconds

유산균의 polysaccharide 생성에 의한 우유 배양액의 점도변화

  • 정후길;이재영;강국희
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.532.1-532
    • /
    • 1986
  • 유산균이 생성하는 polysaccharide 에 관한 연구의 일환으로서 L. casei YIT 9018 SKD-0007, L. bulgaricus SKD-0003, sir. faecalis SKD-1007, str. thermophilus SKD- 1005, str. thermophilus 510 SKD-1006등을 탈지유에 배양하면서 polysaccharide 생성에 의한 배양액의 점도 변화를 검토하였다. 이러한 다당류가 Antitumor로서의 활성과 제암효과를 가지며 인체내의 생리효과를 고양시킨다고 보고되어 있는바 다당류가 최대로 생성되는 조건을 찾는 것을 본 실험의 목적으로 하였다. 다당류의 생성을 측정하는 방법으로서 배지로는 10% 환원탈지유와 12% 환원전지유를 선택하였으며 Brookfield Viscometer를 사용하여 배양액의 점도를 경시적으로 측정하였다. 시험균 중에서 str. thermophilus 510 SKD-1006이 가장 높은 점도를 나타내었는데 41$^{\circ}C$ 배양 5일째에 5000 cps였고 다른균에 비해서 1000cps이상 높았다. 접종량이 증가할수록 점도도 증가하였으며 14%이상의 탈지유 농도에서는 7000cps를 나타냈다. 탈지유와 전지유 배양액 모두 의가소성 유체의 유동 양식을 나타내었는데 12% 환원전지유 배양액은 최대점도값이 2500 cps에 불과하였으며 배양 2일째에 최대점도 값에 도달하여 그 이후로 급격한 감소현상을 보였다.

  • PDF

Reduction of NO Emissions from Diesel Combustion using a Catalytic Filter Reactor (촉매 필터 반응기를 이용한 경유연소 배가스 내의 NO저감)

  • 김지용;이상권;한영욱
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.257-258
    • /
    • 2000
  • 산업 발전에 따른 대기오염물질의 배출로 인한 대기오염은 날로 심각해지고 있다. 대기오염물질중 NO는 제어에 대한 관심이 높아지고 있는데 NOx의 배연 처리 기술중 가장 보편화되어 있는 기술은 선택적 촉매 환원법(selective catalytic reduction, SCR)이다. 그중 암모니아(NH$_3$)를 환원제로 사용한 SCR법이 가장 널리 사용되고 있는데 이러한 NH$_3$에 의한 탈질공정은 미반응 NH$_3$의 배출, 경제성 등의 문제점이 있어 다른 환원제 즉 urea나 hydrocarbon을 사용하는 탈질기술의 개발이 요구되고 있으며, 특히 hydrocarbon이나 alcohol 계열을 이용한 SCR법에 대한 연구가 활발하게 진행되고 있다. (중략)

  • PDF

On the Electrochemical Reduction of O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorthioate (Fenitrothion) Pesticide in Acetonitrile Solution (Acetonitrile 용액중에서 살충제 O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorothioate (Fenitrothion)의 전기화학적 환원)

  • Il-Kwang Kim;Youn-Geun Kim;Hyun-Ja Chun
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.186-194
    • /
    • 1988
  • The electrochemical reduction of O,O-dimethyl-O-(3-methyl-4-nitrophenyl)-phosphorothioate (Fenitrothion) has been studied in acetonitrile solution containing surfactant micelle by direct current (DC)-differential pulse (DP) polarography, cyclic voltammetry (CV) and controlled potential coulometry (CPC). The partially reversible electron transfer-chemical reaction(EC, EC mechanism) of fenitrothion reduction proceeded by four electron transfer to form O,O-dimethyl-O-(3-methyl-4-hydroxyaminophenyl)-phosphorothioate which undergoes single bond of the phosphorus atom and phenoxy group cleaves to give p-amino-m-cresol and dimethyl thiophosphinic acid as major product by two electron transfer-protonation at higher negative potential. The polarograpic reduction waves shown to suppressed due to inhibitory effect of sodium lauryl sulfate micelle solution and split up on selectivity of anionic micelle effect in two step at the first reduction peak.

  • PDF

Studies on the Electrochemical Properties for Rancidity of Linoleic Acid (리놀산의 산패에 대한 전기화학적 특성 연구)

  • 김우성;이송주
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.360-364
    • /
    • 2000
  • We studied the degree of rancidity of linoleic acid for the electrochemical redox reaction in time course and the kinetic parameters. The current of the linoleic acid was increased and the potential was shifted to the positive potential when scan rates were faster. The redox reaction of the linoleic acid was proceeding to totally irreversible and diffusion controlled reaction. From these results, diffusion coefficient(D$\_$o/) of linoleic acid was observed to 2.61$\times$10$\^$-6/ ㎠/s in the 0.1 M TEAP/DMF electrolyte solution. Also, exchange rate constant(K$\^$o/) was observed to 9.79$\times$10$\^$-11/ cm/s. The leaving time in air condition was found to affect the rancidity. We predicted that the product was carbonyl compounds.

  • PDF

Selective Electrochemical Reduction on the Imino Group of ${\alpha},{\beta}$-Dibenzyl N-Benzylidene L-Aspartate (${\alpha},{\beta}$-Dibenzyl N-Benzylidene L-Aspartate 의 Imino 기에 대한 선택적 전해환원반응)

  • Kim, Il-Kwang;Kim, Youn-Geun;Lee, Young-Haeng;Chai, Kyu-Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.614-622
    • /
    • 1989
  • The electrochemical reduction of ${\alpha},{\beta}$-dibenzyl N-benzylidene L-aspartate in 0.1M LiCl ethanol solution was investigated by direct current (DC), differential pulse (DP) polarography, cyclic voltammetry and controlled potential coulometry(CPC). The irreversible reductive amination of imino group proceeded to form ${\alpha},{\beta}$-dibenyl N-benzyl L-aspartate by CEC or CE electrochemical reaction mechanism at the first reduction step (-0.92 volts vs. Ag-AgCl). The polarographic reduction wave was slightly suppressed due to inhibitory effect of micelle, while the irreversibility was increased according to the increase of Triton X-100 concentration. Upon the basis of product analysis and polarogram interpretation with pH change, possible CE electrode reaction mechanism was suggested.

  • PDF

Performance Management of a DeNOx System for Stationary Sources and Regeneration Strategies of DeNOx Catalysts (고정원 탈질시스템의 성능관리와 탈질촉매 재생전략)

  • Kim, Moon Hyeon
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.141-153
    • /
    • 2016
  • Numerous stationary NOx emission sources have employed a suitable deNOx technology that is typically selective catalytic reduction (SCR) of NOx by NH3 over V2O5/TiO2-based catalysts with on-demand monolithic structures. These structured catalysts undergo a time-on-deterioration of deNOxing activity on site. Thus, we need more efficient, more deactivation-tolerant, more economic deNOx systems and for which, their performance management is essential. This review has covered details of strategies to successfully manage the performance of SCR catalysts and timely replace them to new or rejuvenated ones. Key considerations to maintain the catalyst activity will be reviewed. Details of the sequential addition of new catalysts and the replacement of life-end catalysts and their regeneration will be discussed with general guidances to determine the time for such a replacement. Finally, a better way to get more economic approaches to deNOx system management will be proposed here.

An Experimental Study on Optimization of $NH_3$ Injection for the Selective Catalytic Reduction(SCR) System (선택적 환원 촉매(SCR)에서 암모니아($NH_3$) 분사량 최적화에 대한 실험적 연구)

  • Jang, Ik-Kyoo;Yoon, Yu-Bin;Park, Young-Joon;Lee, Seang-Wock;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2874-2879
    • /
    • 2008
  • The Selective catalytic reduction(SCR) system is a highly-effective device of $NO_x$ reduction for diesel engines. Generally, the ammonia($NH_3$) generated from a liquid urea-water solution is used for the reductant. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency becomes lower, due to temperature window. And space velocity also affects to $NO_x$ conversion efficiency. This paper reviews a laboratory study to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the SCR system. The maximum conversion efficiency of $NO_x$ was indicated when the $NH_3$ to $NO_x$ ratio was 1.2 and the space velocity was $60,000\;h^{-1}$. The results of this paper contribute to improve overall $NO_x$ reduction efficiency and $NH_3$ slip.

  • PDF