• Title/Summary/Keyword: 선체 종굽힘

Search Result 6, Processing Time 0.021 seconds

Midship Section Design of Ship Structures Based on Reliability Analysis (신뢰성 해석에 기초한 선체 중앙단면 설계)

  • Lee, Joo-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.507-512
    • /
    • 2011
  • This study is concerned with the reliability analysis and its based design of midship section against the ultimate bending strength. Eight bulk carriers and seven oil tankers over 100m length are chosen for the present study. Target reliability indices for the two ship types have been derived based on the results reliability analysis of the present ship models. Reliability-based structural design codes are proposed for use in design of midship section of bulk carriers and oil tankers. The design codes proposed in this study have been successfully applied to re-design of midship section of the present ship types. It has been found that the proposed codes can provide more uniform structural design results.

Development of Longitudinal Ultimate and Residual Strength Estimation System for Hull Girder Structure (선각 거어더의 최종 몇 잔류종강도 추정 시스템 재발)

  • J.H. Ham;U.N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.107-115
    • /
    • 1995
  • A simple estimation system of ultimate and residual strength for ship structures is developed on the Open-Window system of SUN4 engineering workstation. System development consists of three stages. Firstly, various ultimate longitudinal strength estimation methods are investigated and some rational estimation methods are adopted based on the parametric comparison of various hulls or box girders. Secondly, these selected and newly formulated methods are linked with elastic & perfectly plastic section modulus calculation procedure. Therefore, the longitudinal hull girder strength can be calculated in the intact and damaged conditions due to the grounding or collision of hull structure. Finally, an exclusive system is developed such that whole procedures are proceeded under the window management system using mouse button and elastic and perfect plastic stress conditions. Also longitudinal members are plotted automatically under three dimensional graphic circumstances. These established program is tested for various actual ships, and some examples are illustrated.

  • PDF

Optimum Structural Design of Pipe Loops Used in Large Vessels(I) (대형 선박의 파이프 루프 최적구조설계(I))

  • Park, Chi-Mo;Jang, Dae-Oh;Han, Sam-Duck
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.47-54
    • /
    • 2007
  • Ship structures are subject to severe environmental loads causing appreciable hull girder deflection which in turn affects the piping system attached to the main hull in the form of displacement load. While this load may cause failure in the pipes, loops have been widely adopted as a measure of preventing this failure with the idea that they may lower the stress level in a pipe by absorbing some portion of the displacement load. But as the loops also have some negative effects such as causing extra manufacture cost, deteriorating the function of the pipe and occupying extra space, the number and the dimensions of the loops adopted need to be minimized. This research develops a design formula for pipe loops. The accuracy of the proposed design formula was verified by comparing two results respectively obtained by the proposed formula and MSC/NASTRAN. The paper ends with the sample example showing the efficiency of the proposed formula.

The Development of Design Formulas for Pipe Loops Used in Large Vessels(II) (대형 선박의 파이프 루프 설계식 개발(II))

  • Park, Chi-Mo;Yang, Park-Dal-Chi;Lee, Jong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.158-163
    • /
    • 2009
  • Many longitudinal pipes in ships are subject to considerable loads, caused by hull girder bending in the ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted to prevent such failure, based on the idea that they can lower the stress level in a pipe byabsorbing some portion of these loads. But as the loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of these loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the flexibility effect of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results obtained from the proposed formulas and MSC/NASTRAN. This paper concludes with a sample application of the proposed formulas, showing their efficiency.

The Development of Design Formulas for Pipe Loops Used in Large Vessels (I) (대형 선박의 파이프 루프 설계식 개발 (I))

  • Park, Chi-Mo;Yang, Park-Dal-Chi;Lee, Jong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.132-137
    • /
    • 2008
  • Ship structures are subject to severe environmental loads causing appreciable hull girder bending which in turn affects the piping system attached to the main hull in the form of a displacement load. While this load may cause failure in the pipes, loops have been widely adopted as a means of preventing this failure, with the idea that they may lower the stress level in a pipe by absorbing some portion of the displacement load. But since such loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of the loops adopted need to be minimized. This research developed design formulas for pipe loops, modeling them as frames composed of beam elements, where not only bending but also shear deflection is taken into account. The accuracy of the proposed design formulas was verified by comparing two results respectively obtained by the proposed formulas and MSC/NASTRAN. The paper concludes with a sample example showing the efficiency of the proposed formulas.

Evaluation of Structural Integrity of the ISO-based Moon Pool Type Diver Boats (ISO 기반 Moon Pool형 다이버 보트 구조 건전성 평가)

  • Kang, Byoung-mo;Oh, Woo-jun;Na, Hyun-ho;Choi, Ju-seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 2018
  • This Study investigates the Structural Integrity of Boats for Divers, given increased demands for Underwater and Recreational use. We conducted research on a Small Catamaran with a Moon Pool in the center of the Hull, using the Finite Element Method to calculate allowable stress based on the ISO Rule. We computed the coefficients defined in ISO 12215-5 and TC118.1225-7, and determined the suitability of using the ISO Standard and Allowable Stress Design method (ASD) by applying Longitudinal Bending Moment, Torsional moment, and Bottom Slamming Load. We also applied the Ultimate Strength Design Method (LFRD) using Finite Element Analysis (FEA). As a Result of this Research, it was found that ships with a Moon Pool do have Structural Integrity according to their Design in accordance with ISO and KR Regulations.