• Title/Summary/Keyword: 선체 국부구조

Search Result 27, Processing Time 0.024 seconds

Transverseless AFRAMAX급 이중선체 유조선 구조부재의 안전성평가

  • 백점기;김도현;봉현수;김만수;한성곤
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.31-43
    • /
    • 1993
  • 본 연구에서는 힁부재가 없는 AFRAMAX급 신구조 방식의 유조선을 개발하고자 하였다. 설계의 기본 개념은 1) 이중선체구조를 채용하여 해난사고 발생시 기름유출 방지를 피하고, 2) 힁부재가 없는 극히 단순한 선체구조를 채용하여 용접 로봇등을 활용한 자동건조 비율을 높임으로써 건조 생산성을 향상시키는데 주안점을 두고 있다. 설계 결과 얻어진 선체구조는 기존의 유조선 구 조와 매우 상이하다. 초기구조설계단계에서 구조 부재의 치수는 기존의 선급설계 지침을 활용 하여 결정하였으나, 기존의 유조선 구조와 비교하여 구조배치가 크게 바뀌어 졌기 때문에 기존의 선급설계지침을 만족했다고 해서 구성부재와 국부구조뿐만 아니라 구조 전체적으로도 충분한 구조안전성을 가지고 있는지는 확실치 않다. 따라서 직접구조해석에 의한 구조안전성 평가가 필수적으로 요구되며, 이를 위해 저자들은 선체구조의 최종 종강도(ultimate longitudinal strength), 최종 힁강도(ultimate transverse strength) 및 최종 국부강도(ultimate local strength )를 기준으로한 구조안전성 평가를 수행하였다. 본 논문에서는 이들 중에서 국부 구조부재에 대한 안전성평가 문제만을 다루었다. 결론적으로, 본 연구에서 개발한 선체구조는 건전상태(intact condition)하에서 뿐만 아니라 손상상태하에서도 구조부재는 좌굴 또는 붕괴하지 않고 전반적 으로 충분한 구조안전성을 가지고 있다는 결론을 내릴 수 있었다.

  • PDF

Review of Fatigue Strength Evaluation on Weld Joints of Hull Structure (선체구조 용접이음부의 피로강도 평가에 대한 검토)

  • 성요경
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.26-35
    • /
    • 1994
  • 본 고에서는 VLCC(Very Large Crude Oil Carrier)의 운항중 선체의 구조적 불연속부에서 발생 하는 균열이 피로강도의 부족에 의해 발생하는 피로균열임을 밝히는 당사의 사례에 대해 설명 하고, 국부 구조해석기술을 이용하는 피로설계의 관점에서 선체구조가 충분한 피로강도를 갖고 안전한 구조가 될 수 있도록 선체 용접이음부의 피로강도를 평가하는 체계에 대해 검토하고자 한다.

  • PDF

Structural Intensity Analysis of Local Ship Structures Using Finite Element Method (유한요소법을 이용한 선체 국부 구조물의 진동인텐시티 해석)

  • Dong-Hwan Lee;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.62-73
    • /
    • 2001
  • The interest in evaluation of structural intensity arises for practical reasons, because net energy flow distribution offers information of energy transmission path, positions of sources, and sinks of vibration energy. In this paper, structural intensity analysis of local ship structures using finite element method(FEM) is carried out. The purpose of this analysis is to evaluate the relative accuracy according to mesh fineness. The structural intensity of unstiffened and stiffened plates varying their mesh fineness is analyzed and the results are compared with those obtained by the assumed mode method. As results, the proper mesh size in qualitative/quantitative structural intensity analysis of plate structures is proposed. In addition, the propagation phenomenon of vibration energy is investigated for the thickness-varying flat plate, L-type plate, and box-girder structures.

  • PDF

A Study on the Local Strength Structural Analysis for Steel Yacht (강선요트의 국부강도 구조해석에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.155-159
    • /
    • 2005
  • Analysis target ship is not introduced yet in domestic as steel yacht that is getting into the spotlight by leisure life in Australia or Japan. Sailing yacht or Yacht for leisure time made of FRP into controlling power fare mainly and the design and made of latest fishing boat and something of domestic is consisting mainly. To need investigated for concept is various kinds overall strength as that use mainly steel wire material structurally of steel yacht by small crafts about Longi strength, Transe strength portion even of design safety factor at subject to do Rule's allowable stress enough stable structure accomplish. But it is assessment of part intensity that become refer to most in small size ship.

  • PDF

Ultimate Longitudinal Strength Analysis of Ship′s Hull Girder by Idealized Structural Unit Method (이상화(理想化) 구조요소법(構造要素法)에 의한 선체구조(船體構造)의 최종종강도(最終縱强度) 해석(解析))

  • Jeom-K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.139-149
    • /
    • 1991
  • In this paper, an efficient method for the ultimate longitudinal strength analysis of the double skin hull girder is presented by using idealized structural unit method. Idealized plate element subjected to biaxial load is developed taking account of initial deflection and welding residual stress. Interaction effect between local and global buckling in the whole structure is also taken into consideration. The reserve strength factor and reliability index for the example 40K double skin product oil carrier are evacuated against the ultimate longitudinal strength. It is concluded that the prudent method seems to be useful in the sense that the computing time required is very short while giving the reasonable solution.

  • PDF

A Study of the In-plane Rigidity of a Compressed Ship Plate above Buckling Load (압축하중을 받는 선체판의 좌굴후 면내강성에 관한 연구)

  • 고재용;박성현;박주신
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.107-112
    • /
    • 2002
  • Basically, ship structure consists of the plate members, and a strength of overall ship structurnds on the stiffness and strength of ship platings. If buckling which causes to deflect ship plate members occurs, the stiffness of ship plate markedly decreases, and thus buckling has a serious effect on the stiffness or strength of overall ship structure. Buckling is one of the most important design criteria when we scantle structure members. In the present study, a inplane rigidity of a compressed ship plate above buckling load is proposed. The proposed inplane rigidity is available in the elastic or elasto-Plastic ranges in order to can out a more efficient and reliable design.

  • PDF

Crashworthy Safety Assessment of High Speed Passenger Ship with Underwater Floating Matter (쾌속여객선의 수중부유물과의 내충돌 안전성 평가)

  • Lee, Sang-Gab;Lee, Jae-Seok;Baek, Yun-Hwa;Jun, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.30-31
    • /
    • 2009
  • Through the full scale ship collision response analysis of high speed passenger ship with underwater floating matters, the objective of this study is to perform the crashworthy safety assessment of its hull and passengers. For this safety assessment, diverse collision scenarios could be established through the thorough understanding of damage mechanisms due to the collision of its hydrofoil system with underwater floating matter examining the damage informations of its hull and passengers from the collision accidents, and through the estimation of the damages of its hull and passenger. The next step, crashworthy safety assessment of its hull and passengers, was carried out by the collision response analyses of high speed passenger ship with underwater floating matter using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code in consideration of surrounding water, and using local zooming analysis technique.

  • PDF

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF

A Study on the Ultimate Strength According to the Boundary Condition of a Ship Plate under Thrust (압축하중을 받는 선체판의 경계조건에 따른 최종강도에 관한 연구)

  • 고재용;박주신;이돈출
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.89-93
    • /
    • 2002
  • One of the primary factors like plate structure in ship is redundancy structure that is comparable with ocean structure and frame structure. The more component material becomes buckling collapsed locally the less structure stiffness becomes accordingly. As a result, by increasing the load distribution of my other subsidiary structure continually component member collapses, therefore the structure could be in danger of collapse. So, in order to interpret this phenomenon precisely, the study on boundary condition of the ship's plate and post-buckling analysis must be considered In this study, the rectangular plate is compressed by the in-plane load Buckling & Ultimate strength characteristics are applied o be the elasto-plasticity large deformation by ansys code with F.E.M method On this basis, elasto-plasticity of the plain plate are investigated. This study proved elasto-plasticity behaviour of the ship's plate in accordance with boundary condition based on the series analysis in case of the compressive load operation

  • PDF